Please use this identifier to cite or link to this item: https://dspace.univ-adrar.edu.dz/jspui/handle/123456789/7846
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOULAY, Hicham-
dc.contributor.authorGHAITAOUI, Moulay Elhadj-
dc.contributor.authorKABOU, Salheddine / supervisor-
dc.date.accessioned2023-05-14T10:09:01Z-
dc.date.available2023-05-14T10:09:01Z-
dc.date.issued2022-
dc.identifier.urihttps://dspace.univ-adrar.edu.dz/jspui/handle/123456789/7846-
dc.descriptionOption: Intelligent Systemsen_US
dc.description.abstractIn this theis, we proposed a new deep learning model to predict travel time based on GPS data collected in the city of Adrar. Our approach is based on two essential parts: The first part focuses on the data collection. In this phase, an android application, called GPS Adrar, is developed for the purpose of collecting GPS coordinates from Adrar’s citizens. The second part concerns data processing. In this phase, all the data collected in the first part must be analyzed using a depp learning model. Next, the new model is integrated with an android application, called Wassalni that offers the user a better prediction of road traffic among a set of available destinations. The experimental results show that the proposed model offers high accuracy than Google Maps in most of the routes.en_US
dc.language.isofren_US
dc.subjectIntelligent Systemsen_US
dc.subjectNtelligence Artificielleen_US
dc.subjectRéseaux De neuronesen_US
dc.subjectSystème De Positionen_US
dc.subjectEstimation Du Temps De Trajeten_US
dc.subjectSystème De Transport Intelligenten_US
dc.subjectnement Globalen_US
dc.subjectApprentissage Automatiqueen_US
dc.subjectFlux De traficen_US
dc.subjectEmbouteillageen_US
dc.subjectApprentissage En Proen_US
dc.subjectIntelligence Artificielle - Flux de trafic - Embouteillage - Apprentissage en profondeur - Réseaux de neurones - Système de positionnement global - Système de transport intelligent - estimation du temps de trajet – Apprentissage automatiqueen_US
dc.titleImplementation of an application mobile for the traffic predictionen_US
dc.typeThesisen_US
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
Mise en œuvre d’une application.pdf9.06 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.