University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science

Department of Mathematics and Computer Science

Algorithms and Data Structure 2

Full Algorithms and Data Structure 1 Course

Level : 1st YEAR LICENCE (LMD) in Mathematics and

Computer Science

Semester: 2nd Semester (S2)

m » ® C O O

Dr. KADDI Mohammed

Associate professor

University of Adrar

4 ¢ O U Z » T

| Dr. KADDI Mohammed

Foreword

This handout, a crucial resource, is specifically designed for first-year LMD students in the
Mathematics and Computer Science field. It serves as a comprehensive course manual for the
subject "Algorithmics and data structure 2", aiming to introduce the fundamental notions of
functions and procedures, files, and linked lists. It's important to note that students should have a
solid foundation in computer science and mathematics.

This handout is structured into three chapters as follows:
First chapter: Subroutines: Functions and Procedures

This chapter will define functions and procedures and then explain local and global variables. 1

will present the transmission of parameters and then address the concept of recursion.
Second chapter: The files

The fundamentals of files, their kinds, and the different operations will all be covered in this

chapter.
Third chapter: Linked lists

This chapter will introduce pointers, dynamic memory management linked lists, operations on

linked lists, doubly linked lists, and special linked lists.

A list of bibliographical references is given at the end of this manuscript.

Table of contents

Page
Foreword 01
Table of contents 02
Chapter 1: Subprograms: functions and procedures 03
1. Introduction 03
2. Definitions 04
3. Local and global variables 08
4. Passing parameters 10
5. Recursivity 13
6. Conclusion 16
Chapter 2: The files 17
1. Introduction 17
2. Why files are needed? 17
3. Types of Files 17
4. File Handling in C 18
5. Functions for file handling 19
6. File operations 22
7. Conclusion 31
Chapter 3: Linked Lists 32
1. Introduction 32
2. Pointers 33
3. Pointer Operations 38
4. Dynamic Memory Management 38
5. Linked Lists 48
6. Operations on Linked Lists 51
7. Double linked list 58
8. Special Linked Lists 61
9. Conclusion 68
References 69

Chapter 1. Sub-programs Algorithms and data structures 2

Chapter 1: subprograms : functions and procedures

1 Introduction

A program is a set of sequential instructions for solving a specific problem. In order to find the
solution method (algorithm), the problem must be divided into different sub-problems
whose solution is less complicated. Partial problems can be solved using sub-programs.

2 Definitions

2.1 Sub-programs:

Is a set of independent instructions that have a name and are called for execution. The caller
is either the main program or another subprogram. When the program, during its execution,
reaches the instruction that calls the procedure, the execution context becomes the contents
of the subprogram, and once it has finished executing the subprogram, it returns to
executing the instruction immediately following the invocation.

The subprograms are also known as procedures, functions, methods and routines.

2.1.1 Procedure:

Procedure is a sub-program which returns no values in its name, but can return results via
arguments. The procedure name can be used as a complete instruction, for example:

algorithm c
SomeProc SomeProc () ;
OtherProc (%) OtherProc (x):;

2.1.2 Function:

Function is a sub-program that necessarily returns a result in its name, as its name is
considered to be a variable that carries a certain value. Consequently, the function call can be
used as a variable in assignment operations and other expressions. For example:

Algorithm C
Y~ SomeFunction (X)*5 Y= SomeFunction(¥X)*5 ;

Note: Any procedure that returns a single result as an argument can be converted into a
function.
2.1.3 Advantages of using subroutines :
e Readability: the use of subroutines organizes and simplifies the program,
making it easier to understand the program code.

e Programming speed: don't repeat the same sequence of instructions several times
within the program.

¢ Reduce program size
o Facilitates the maintenance process
e Reuse: it can be stored in libraries for reuse in other programs.

Chapter 1. Sub-programs

Algorithms and data structures 2

2.2 Declarations

Procedure: the declaration of a procedure takes the following form:

algorithm

C

procedure proc name (parameter list)
local wariables

begin
instructions

end.

void proc name (parameter list) {
local variables ;
instructions ;

Function: the declaration 1s similar to the declaration of a procedure, except that the type of

the result value returned must be specified. It takes the following form:

Algorithm Cc
function func name (parameter list) type func name (parameter list) {
type local variables ; instructions
local wvariables ;
begin }
instructions
end.

- proc_name,func_nameivaﬁdidenﬁﬁer&

Parameter list (optional): a set of variables through which data is transmitted and results
are retrieved, separated by a comma ",", and which are enclosed in parenthesis () and are
of the form paramName: type, such as (a:integer, b:real) and are called "formal
parameters".

» In C, the list of arguments takes the form of type paramName (int a, float b)
Parentheses () are required even if they contain no arguments.

Local declarations (optional) : A list of local variables of the form: var varLoc : type
Instructions: a set of instructions of any type, which will be executed when the subprogram
is called. Where all variables declared in the parameter list or in the local declaration,
which are called local variables, and variables declared in the main program, called
global variables, can be used.
Result_Type : When the program is a function, the type of value that the function will
return to the program that called it must be specified, and a value must be assigned to the
function name. This is generally the function's last instruction,and

is of the form

func _name «— expression where the function name acts as a special variable that contains

the return value by the function.

» In the C language, you can dispense with the result type if the subprogram is a
procedure, but some versions use the word veid, which means that the function
returns nothing, and the word return is used to assign a value to the function name.

return: the return instruction exits the sub-program and returns it to the program that
called it at the instruction immediately following the invocation. It can return a value to
the program that called the sub- program if it was a function.

Chapter 1. Sub-programs Algorithms and data structures 2

Format:

return [<expression>] ;

Example:
return 5*x ; If'a function
return ; if it's a procedure (i.e. a void function)

Important notes:

T

» To find the arguments, we ask what we're giving the subprogram as input and what
it's returning as output.

» The list of parameters in the definition part of the sub-program must be identical in
number and type to that used in the sub-program invocation.

» The first line of a function or procedure declaration, i.e. function type, function
name, type, order and number of arguments, except their names, is called the header
or prototype.

» Arguments are not grouped together if they are of the same type, as in (x,

y:integer), but we put (x:integer, y:integer) (int x, int y)

Any return type other than void indicates that the program is a function and not a

procedure.

void main() or simply main() is a procedure, while int main() is a function, so you
need to use return.

» scanf() and printf() are two functions declared in the stdio library

Y

"f

2.3 Where to declare subprograms :

In the algorithm, it is located after the declaration of variables and before the begin of the
main program. In a C program, it is declared before the main() function.

Note: The order of subroutines is important, as each function must be defined before it can
be used. In other words, if function f1() calls function f2(), then function f2() must be
defined before function f1().

Chapter 1. Sub-programs

2.4 The invocation

To call and execute a procedure, we use its name as a separate instruction and assign values
and/or variables to the arguments in brackets, called effective parameters. Parentheses can
be omitted in the absence of any arguments, but in C, they are mandatory.

The same goes for calling a function, where its name is considered a variable that carries a
certain value, so the function call can be used as a variable in assignment operations and
other expressions.

The parameters must correspond in number, type and order with the formal parameters.

2.5 Examples

Examples of procedures

» If numbers below a certain limit are displayed on the screen, it takes the upper limit and
returns nothing.
procedure displaylbs(n : integer)

» Display array values on screen takes an array and returns nothing
procedure displayTab(t :real array, n :integer)

» Solve a quadratic equation that takes three coefficients and returns two solutions
procedure =gZ(a : integer, b : integer, c : integer, var xl1 : integer, var x2
integer)

Examples of functions

» Square a number Takes a number and returns its square

Algorithms and data structures 2

function square(x :real) : real
» The area of a rectangle takes two numbers and returns the area
function area (long :real, wide :real) : real
» Solving a first-order equation takes two coefficients and returns a solution
function eql(a :real, b :real) : real
» The sum of an array takes an array and returns the sum
function sum(t :array of real numbers, size :integer) : real number
» whether the number is prime or not
function isPrime (x : integer) : Boolean
Example Algorithm
algorithm Test; Program name
var z : real; Global wvariable

procedure displaylNbs (n:entire) The name of the procedure that
takes an

integer variable n as argument

var i:integer; local variable

Begin The begin of the procedure
for i—1 to n do Procedural instructions
Write(i);
Endfor;

End procedure.

end of procedure

Function sumibrs

(x:integer, y:integer) :integer

The name of the function that takes
two integer variables and returns an
integer result. x and y are not
grouped even if

they are of the same type.

Chapter 1. Sub-programs

Algorithms and data structures 2

Begin

The begin of the

sumNbrs «x+y;

The function name acts as a variable
and
takes the result of the sum

End function.

end of function

Begin

Begin of main program

displayNbs (5) ;

Call the displaylbrs procedure, where
51s

assigned to n, and the procedure
displays the numbers from 1 to 5.

z—sommeNbrs (5, 3);

Calling sumNbrs, the program assigns
the value 5 to x and the wvalue 3 to
vy, then

calculates the sum and assigns it to
Z

Write("the sum is ", =z}

It displays the sum is 8

End.

End cof main program

Examples C

#include <stdio.h>

tilizing the stdio library

float z ;

Global wvariable

vold displayNbs (int n) The name of the procedure that
takes an
integer variable n as an argument
{ The begin of the procedure
IHE L G local variable
for (i=1; i<=n; i++)| Procedural instructions
printf ("sd\t", i) ;
} end cf procedure
int sumNbrs (int x, int y) The name of the function that takes
two integer variables and returns an
integer result. x and vy are not
grouped even if
they are of the same type.
{ The begin of the
return x+y ; The function name acts as a variable
and
takes the result of the sum
} end of function
int main() { Begin of main function
displayNbs (5); Call the displayNbrs procedure,
where 5
is assigned to n, and the
procedure displays the numbers from
L. to 5.
Z=sumNbrs (5, 3); Calling sumNbrs, the program assigns

the

value 5 to x and the value 3 to vy,
then calculates the sum and assigns
it to z

printf ("sum is %d", z);

It displays the sum is 8

return 0 ;}

End of main functicon

Chapter 1. Sub-programs

Algorithms and data structures 2

3 Local and global variables

A global variable is a variable declared outside the body of any sub-program, and therefore
usable anywhere in the program. Since a variable is global, it is not necessary to pass it as a
parameter to use it in subprograms. As for its lifetime, i.e. its existence in memory, it is
created when the program is loaded into memory, and is only deleted at the end of program

execution.

A local variable is a variable that can only be used in the subprogram or block where it is
defined. The variable is created when the function is called and deleted when execution is

complete.

» We recommend using local variables and parameters rather than global variables to

avoid errors and ensure function independence.

Example Algorithm:

algorithm glob loc;

Var glob, b integer; global wvariables
Procedure tst
Var b, loc integer; local variables
Begin
glob-11; Global wvariables are accessible
within the
be-22; Local wvariable b hides global
variable b
loc—33;
Write("in tst: glob=", glob, "b=", b, "loc=", loc):
End.
Begin
glob~1;
b-2; Variable b is a global wvariable
Write("before tst : glob=", glob, "b=", b); Local wvariables such as loc
are not
accessible
tst Procedure call
Write("after tst : glob=", glob, "b=", b);
End.

Chapter 1. Sub-programs Algorithms and data structures 2

Example in C

#include <stdio.h>

int glob, b ; global wvariables
tst () {
int d; e s local wvariables
glob=11; Global variables are accessible
within the
b=22; Local variable b hides global

variable b

loc=33;

printf("in tst: glob=%d b=%d loc=%d", glcb, b, loc):

}

int main () {

glob=1;

b=2; Variable b is a global variable

printf ("before tst : glob=%d b=%d", glob, b):

//Local variables such as loc are not accessible

tst () ; |Procedure call

printf ("after tst : glob=%d b=%d", glob, b);

return 0 ;} |

Screen :
before tst: glob=1 b=2
in tst: glob=11 b=22 loc=33
after tst : glob=11 b=2
Explanation:
before calling tst During tst call after calling tst
glob b glob b glob b
1 2 2 2
tst b loc
2 || 33

Before the call, there are only two variables glob and b, but when the tst procedure is called,
the processor reserves two more variables, loc and b. The procedure can access global
variables, but the local variable b hides the global variable b, and when the procedure is

terminated, the processor deletes all local variables.

Chapter 1. Sub-programs Algorithms and data structures 2

4 Passing parameters

Arguments are the variables through which information can be exchanged between
programs, i.e. the input of data from the calling program to the subprogram and/or the

output of results from the subprogram to the calling program.
_ -

There are two ways of passing parameters or arguments
Passage by value:

In this mode, the value of the original variable is copied into the (formal) parameter, and this
copy is used (a local variable), leaving the original variable unchanged. In this mode, a
constant value or expression can be passed, and need not be a variable.

This mode is only used to enter information into the sub-program and is not used to receive
results.

Passage by reference, address or variable:

Not only is the value passed, but the place of the original variable (address) is passed to the
formal variable, so they become a single variable, and any modification of the parameter in
the sub called program results in the modification of the original variable that was passed as a
parameter.

In this mode, it's not possible to pass a constant value or an expression, but it must be a
variable, so it's called pass by variable.

This mode is used to enter information for the sub-program, especially large variables such as
arrays and matrices, to avoid copying. It is also used to receive results.

In algorithm the word “var” is used before declaring the name of the argument to indicate
that the pass is a pass by variable or pass by reference.

To pass arguments with address in C, we use the pointers we'll see in the third chapter of this
course, where the name of the formal parameter is preceded by * when declared and when
used, but when the function is called, this variable is preceded by “&”.

Declaration int f(int *x)
Usage *x=5
Call f(&a);

In C++, pointer management is masked by using the “&” symbol in the declaration only, and
this is called a reference.

Declaration int f(int &x)
Usage X=5;
Call f(a);

Note: We don't use the word var (* in C) to enter data and display results.

10

Chapter 1. Sub-programs

Algorithms and data structures 2

Example Algorithm:
by wvalue [passage by reference, address or variable
algorithm Passage value algorithm Variable passage
var a, c: real var a, c: real
Procedure square (x: real, y: real) Procedure square (x: real, var y: real)
Begin Begin
Yo XFX Ve X*X
end begin end begin
0 a3 ce0 a3
write ("before square c=", c) write ("before square c=", c)
sguare{a ,c) square (a,c)
// we can use square(3,c) write("after square c=", c)
write ("after sqguare c=", c) end
end
the screen
before square c=0 before square c=0
after square c=0 after square c=9

Example C:

passage by value

passage by reference,

#include <stdio.h>

#include <stdio.h>

wvoid square (float =, float vy){ y= void square(float x, float *y) |
X*K; *y=x*x;
} }
int main(){ float a, c; c=0; int main(){ float a, c; c-0;
a=3; a-—3;
printf ("before square c=%f ", c); printf ("before square c=%f ", c);
square(a ,c); square (a, &c) ;
// we can use sqguare(a,5) // square(a,5) cannot be used printf
printf ("after square c=%f ", c); {("after square c=%f", ¢}
return 0 ;} return 0 ;}

the screen

before square c=0
after square c=0

before square c=0
after square c=9

11

address or variable

Chapter 1. Sub-programs

Algorithms and data structures 2

Switching from a procedure to a function:

Any procedure that returns a single result can be converted into a function, where we
change the word Procedure into function and transform the argument that the procedure
returns into a local variable and define the type of the function as the type of this argument
and before terminating the function, we assign the value of the variable to the name of the

function.

For example, the sub-program that calculates the absolute value of a real number:

In the form of a procedure In the form of a function
Procedure abs (x: real, wvar y: real); function abs (x: real): real
Begin var y: real;

if x<0 then Begin
Ye— —X; if =<0 then
else Ve —X;
Ve X7 else
end if; Ve M8
end. end if
abs<y;
end.
call
abs (-5, z); z—abs (-5);
InC
void abs (float %=, float *y) { float abs (float x){
if (x<0) float y; if (x<0)
*y= -x; y= -x;
else else
*y= X; Y= X;

return y;

The wvariable y can be omitted float abs (float x){ if (x<0)
You can omit else, which comes after return -x;
return. return x;
1
call
abs (-5, &z); l z=abs (=-5);

12

Chapter 1. Sub-programs

5 Recursivity

The recursion 1s a simple and elegant way of solving certain problems of a
recurring nature.

A recursive program is any program that recalls itself. Whereas a defined
program is used to define itself. In concrete terms, a recursive program is one
that does part of the work and then recalls itself to complete the rest.

Note: Any for or while loop can be transformed into a recursive program.
Stop condition

Since the recursive program calls itself, it is necessary to provide a condition
for stopping the recursion, which is the case when the program doesn't call
itself or it will never stop.

It is preferable to test the stop condition first, then, if the condition is not
met, to call the program back as the call leads to the stop condition.

Algorithms and data structures 2

Example:

Procedure display (i
begin

write (i)
end.

tinteger) ;

display (i +1);

vold display (int i)
{

printf ("%d",1); display (i +1);

For example, we invoke disp1ay(1), so it displays 1, then it invokes disp1ay for
1=1+1=2, so it displays 2, then to infinity, so the algorithm must have a stop

condition, by Example:

Procedure display (i
begin

:integer)

void display (int i)
{

if (i<10) then write(i) display (i +1) if (i<10) { printf("sd",i); display
endif (1 +1);
end. }

13

Chapter 1. Sub-programs

Algorithms and data structures 2

The general form of the recursive program:

procedure Recursive (parameters);
begin

if (stop condition) then

void recursive (parameters) {
if (stop condition)
<stop point instructions>;

<stop point instructions>; else
else {
<instructions>; <instructions>;
Recursive call (parameters Recursive call (parameters
changed) ; changed)
<Instructions>; <Instructions>;
Endif; }
End. }
Example:
1. Factorial
1 ifn=20
fact(n) = .
(n) {ndmﬂn—n ifn>0
The function can be written as a recursive relationship:
bp =1
b, = nb,_,
iterative recursive
Function fact (n Integer) Integer; Function fact (n Integer) Integer
var i, f: Integer; begin
begin if (n = 0) then fact<l;
f-1; else
for i-2 to n do facten*fact (n-1);
f—- £ * I; endif
endfor; end.
fact-f;
end.
int fact (int n){ int fact (int n){
int f=1; if (n == 0) return 1;
for (i=2 ;i<=n ; i++) f- £ * I; return n*fact (n-1);
return f; }
!

14

Chapter 1. Sub-programs Algorithms and data structures 2

How does it work?

We call the function fact for n=4 to calculate 4!
We call F=fact(4) which in turn calls fact(3) which calls fact(2) until it calls fact(0) which
terminates and returns 1 allowing fact(1) to be calculated which allows fact(2) to be calculated

until fact(4) is calculated fact(4). See below.

24

6
F%ﬂm (‘\ 5
Fact (4= 4%E3ct (3) - 1
fact (3)= 3%zt (2 r\ :
Uﬂ (=2 Fact (1) {“

fact (1)= 1#£act ()

fact(4) fact(3) fact(2) fact(1) fact(0)=1

The execution stack :

A memory location designated to hold parameters and local variables, and where the result is
stored for each running sub-program.

Usually, programming in recursive mode is easier and more readable, but it consumes a lot of
memory, for example to calculate 4! We reserve a place in the stack for the result, another for
the parameter n=4, then another place for the result of 3! And the parameter n = 3 and so on
until 0! is calculated. The parameter n=0 is deleted, then the parameters and results are deleted
in the reverse order in which they were created.

Mutual recursive: a recursive program can call itself directly or indirectly, because it calls

another program, which in turn calls the first program.

15

Chapter 1. Sub-programs Algorithms and data structures 2

Example:

To calculate m, we use the following relationship n/4=1-1/3+1/5-1/7+1/9... We create two
recursive functions, the first adding 1/n, calling the second for n=n-2, then subtracting 1/n
which in turn calls the first to add and so on until n becomes zero.

function f1 (n: integer); #include <stdio.h>
begin float £2(int n);
if n<=0 then
£f1-0; float fl(int n) {
else if (n <= 0) return 0;
fl-1/n+f2(n-2); return 1. / n + f2(n - 2);
endif }
end. fleoat £2 (int n) {
if (n <= 0) return 0;
function f2 (n: integer); return -1. / n + fl1(n - 2);
begin }
if n<=0 then void main () {
£2.0; printf ("$£\n", 4*f1(2*100+1) * 4);
else }
f2.=1/n+£l(n-2);
endif
end.

The f1 function calculates n/4, and to calculate m, we multiply the result by 4.

Important note: Since function fl calls function 2, which 1s not yet defined in C, the header
of function f2 must be added without its body (the first line) before defining function f1,

knowing that its definition comes after.
6 Conclusion

This chapter introduced functions and procedures, local and global variables, parameter
passing, and the concept of recursion. The next chapter will cover files, their types, and file

manipulation.

16

Chapter 2. The Files Algorithms and data structures 2

Chapter 2: The files

1. Introduction

A file is a container in computer storage devices used for storing data.
2. Why files are needed?

o When a program is terminated, the entire data is lost. Storing in a file will preserve your
data even if the program terminates.

« If you have to enter a large number of data, it will take a lot of time to enter them all.
However, if you have a file containing all the data, you can easily access the contents of
the file using a few commands in C.

¢ You can easily move your data from one computer to another without any changes.
3. Types of Files

When dealing with files, there are two types of files you should know about:
- Text files
- Binary files

3.1 Text files

Text files are the normal .txt files. You can casily create text files using any simple
texteditors such as Notepad.

When you open those files, you'll see all the contents within the file as plain text.
Youcan easily edit or delete the contents.

They take minimum effort to maintain, are easily readable, and provide the least

security and takes bigger storage space.

17

Chapter 2. The Files Algorithms and data structures 2

3.2 Binary files
Binary files are mostly the .bin files in your computer.

Instead of storing data in plain text, they store it in the binary form (0's and 1's).

They can hold a higher amount of data, are not readable easily, and provides better

security than text files.
4. File Handling in C

In programming, we may require some specific input data to be generated several numbers of
times. Sometimes, it is not enough to only display the data on the console. The data to be
displayed may be very large, and only a limited amount of data can be displayed on the console,
and since the memory is volatile, it is impossible to recover the programmatically generated data
again and again. However, if we need to do so, we may store it onto the local file system which

is volatile and can be accessed every time. Here, comes the need of file handling in C.

File handling in C enables us to create, update, read, and delete the files stored on the localfile

system through our C program. The following operations can be performed on a file.

e Creation of the new file
¢ Opening an existing file
¢ Reading from the file

e Writing to the file

e Deleting the file

18

Chapter 2. The Files Algorithms and data structures 2

5. Functions for file handling

There are many functions in the C library to open, read, write, search and close the file. Alist of

file functions is given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position
8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

5.1 Opening File: fopen()

We must open a file before it can be read, write, or update. The fopen() function is
used toopen a file. The syntax of the fopen() is given below.
1. FILE *fopen(const char * filename, const char * mode);
The fopen() function accepts two parameters:
¢ The file name (string). If the file is stored at some specific location, then we
must mention the path at which the file is stored. For example, a file

name can belike "¢://some_folder/some_file.ext".

19

Chapter 2. The Files

Algorithms and data structures 2

4,

The mode in which the file is to be opened. It is a string.

We can use one of the following modes in the fopen() function.

Mode Description
r opens a text file in read mode
w opens a text file in write mode
a opens a text file in append mode
rt opens a text file in read and write mode
wt opens a text file in read and write mode
at opens a text file in read and write mode
b opens a binary file in read mode
wb opens a binary file in write mode
ab opens a binary file in append mode
b+ opens a binary file in read and write mode
wb+ opens a binary file in read and write mode
ab+ opens a binary file in read and write mode

The fopen function works in the following way.

Firstly, It searches the file to be opened.

Then, it loads the file from the disk and place it into the buffer. The buffer is

used to provide efficiency for the read operations.

It sets up a character pointer which points to the first character of the file.

Consider the following example which opens a file in write mode.
#include<stdio.h>

void main()3. {

FILE *fp ;

char ch;

20

Chapter 2. The Files Algorithms and data structures 2

6. fp =fopen("file_handle.c","r");
7. while (1)8. {
9. ch=fgetc(fp);
10. if (ch == EOF)
11. break ;
12. printf("%c",ch) ;
13.}
14. fclose (fp) ;
15. }
Output
The content of the file will be printed.

#include; void main()

{
FILE *fp; // file pointerchar ch;

Il

fp
{

ch = fgetc (fp); //Each character of the file is readand

fopen("file handle.c","r");while (1)

stored in the character file.

if (ch == EOF)break; printf("%c",ch);
1

fclose (fp);

}

5.2 Closing File: fclose()
The fclose() function is used to close a file. The file must be closed after performing all the

operations on it. The syntax of fclose() function is given below:

1. int fclose(FILE *fp);

21

Chapter 2. The Files Algorithms and data structures 2

6. File Operations
In C, you can perform four major operations on files, either text or binary:
1. Creating a new file
2. Opening an existing file
3. Closing a file
4

Reading from and writing information to a file
Working with files

When working with files, you need to declare a pointer of type file. This declaration isneeded for
communication between the file and the program.

FILE *fptr;
6.1 Opening a file - for creation and edit

Opening a file is performed using the fopen() function defined in the stdio.h header file.
The syntax for opening a file in standard /O is:

ptr = fopen("fileopen", "mode") ;

For example,

fopen ("E:\\cprogram\\newprogram. txt","w") ;

fopen ("E:\\cprogram\\oldprogram.bin", "rb");

* Let's suppose the file newprogram. txt doesn't exist in the location E: \cprogram. The
first function creates a new file named newprogram. txt and opens it for writing as per the
mode 'w'.

The writing mode allows you to create and edit (overwrite) the contents of the file.

* Now let's suppose the second binary file oldprogram.bin exists in the location
E:\cprogram.

The second function opens the existing file for reading in binary mode 'rb'.

The reading mode only allows you to read the file, you cannot write into the file.

22

Chapter 2. The Files

Algorithms and data structures 2

Mode | Meaning of Mode During Inexistence of file
r Open for reading. If the file does not exist, fopen() returns NULL.
b Open for reading in binary mode. If the file does not exist, fopen() returns NULL.
w Open for writing. If the file exists, its contents areoverwritten.
If the file does not exist, it will becreated.
wb Open for writing in binary mode. If the file exists, its contents areoverwritten.
If the file does not exist, it will becreated.
r Open for reading. If the file does not exist, fopen() returns NULL.
b Open for reading in binary mode. If the file does not exist, fopen() returns NULL.
w Open for writing. If the file exists, its contents areoverwritten.
If the file does not exist, it will becreated.
wb Open for writing in binary mode. If the file exists, its contents are overwritten.
If the file does not exist, it will becreated.
a Open for append. If the file does not exist, it will becreated.
Data is added to the end of the file.
ab Open for append in binary mode. If the file does not exist, it will becreated.
Data is added to the end of the file.
r+ Open for both reading and writing. If the file does not exist, fopen() returns
NULL.
rb+ Open for both reading and writing If the file does not exist, fopen() returns
in binarymode. NULL.
w+t Open for both reading and writing. | If the file exists, its contents are overwritten.
If the file does not exist, it will becreated.
wb+ | Open for both reading and writing | If the file exists, its contents are overwritten.
in binarymode. If the file does not exist, it will becreated.
at Open for both reading and If the file does not exist, it will becreated.
appending.
ab+ Open for both reading and If the file does not exist, it will becreated.

appending in binarymode.

Opening Modes in Standard 1/0

23

Chapter 2. The Files Algorithms and data structures 2

6.2 Closing a File

Closing a file is performed using the fclose () function.

fclose (fptr):

Here, fptr is a file pointer associated with the file to be closed.
6.3 Reading and writing to a text file

For reading and writing to a text file, we use the functions fprintf () and fscanf () .
They are just the file versions of printf () and scanf () . The only difference is that

fprintf () and fscanf () expects a pointer to the structure FILE.

Example 1: Write to a text file

#include <stdio.h>
#include <stdlib.h>
int main ()
{
int num;
FILE *fptr;
// use appropriate location if you are using MacOS orLinux
fptr = fopen("C:\\program.txt","w");
if (fptr == NULL)
{
printf ("Error!") ;exit (1) ;
}

printf ("Enter num:

) ;scanf ("%d", &num) ;
fprintf (fptr, "%d", num) ; fclose (fptr) ;

return 0;

24

Chapter 2. The Files Algorithms and data structures 2

This program takes a number from the user and stores in the file program. txt.
After you compile and run this program, you can see a text file program. txt created in C

drive of your computer. When you open the file, you can see the integer you entered.
Example 2: Read from a text file

#include <stdio.h> #include <stdlib.h>
int main ()

{

int num;
FILE *fptr;
if ((fptr = fopen("C:\\program.txt","r")) == NULL) {

printf ("Error! opening file");

// Program exits if the file pointer returns NULL.
exit (1) ;

}

fscanf (fptr,"%d", &num);

printf ("Value of n=%d",num);

fclose (fptr);

return 0;

25

Chapter 2. The Files Algorithms and data structures 2

This program reads the integer present in the program. txt file and prints it onto the screen.

If you successfully created the file from Example 1, running this program will get you the integer
you entered.

Other functions like fgetchar (), fputc () etc. can be used in a similar way.

6.4 Reading and writing to a binary file

Functions fread () and fwrite () are used for reading from and writing to a file on the disk

respectively in case of binary files.
Writing to a binary file

To write into a binary file, you need to use the fwrite () function. The functions take four
arguments:

1. address of data to be written in the disk

2. size of data to be written in the disk

3. number of such type of data

4. pointer to the file where you want to write.

fwrite (addressData, sizeData, numbersData, pointerToFile);

Example 3: Write to a binary file using fwrite()

#include <stdio.h>
#include <stdlib.h>
struct threeNum
{
int nly; n2% n3;
b
int main ()
{
akinu =it
struct threeNum num;FILE *fptr;
if ((fptr = fopen("C:\\program.bin","wb")) ==NULL) {
printf ("Error! opening file");
// Program exits if the file pointer returns NULL.
exit(1);

26

Chapter 2. The Files Algorithms and data structures 2

for(n = 1; n < 5; ++n)

num.nl = n; num.n2 = 5*n; num.n3 = 5*n + 1;
fwrite(&num, sizeof (struct threeNum), 1, fptr):;

}
fclose(fptr):;

return 0;

In this program, we create a new file program.bin in the C drive.

We declare a structure threeNum with three numbers - n1, n2 and n3, and define it in the
main function as num.

Now, inside the for loop, we store the value into the file using fwrite () .

The first parameter takes the address of num and the second parameter takes the size of the
structure threeNum,

Since we're only inserting one instance of num, the third parameter is 1. And, the last parameter
*fptr points to the file we're storing the data.

Finally, we close the file.
Reading from a binary file
Function fread () also take 4 arguments similar to the fwrite () function as above.

fread(addressData, sizeData, numbersData, pointerToFile);

27

Chapter 2. The Files Algorithms and data structures 2

Example 4: Read from a binary file using fread()

#include <stdio.h>
#include <stdlib.h>
struct threeNum
{
dnds Loy sn2e Dl
}i
int main ()
{
at) ah ol 5 B
struct threeNum num;
FILE *fptr;
if ((fptr = fopen("C:\\program.bin","rb")) == NULL) {
printf ("Error! opening file");
// Program exits if the file pointer returns NULL.
exit (1) ;
}
for{(n = 1; n < 5; ++n)
{
fread (&num, sizeof (struct threeNum), 1, fptr);
printf("nl: %d\tn2: %d\tn3: %d\n", num.nl, num.n2,num.n3);
}
fclose (fptr);
return 0;

}

In this program, you read the same file program.bin and loop through the records one by one.
In simple terms, you read one threeNum record of threeNum size from the file pointed by
* fptr into the structure num.

You'll get the same records you inserted in Example 3.

28

Chapter 2. The Files Algorithms and data structures 2

6.5 Getting data using fseek()

If you have many records inside a file and need to access a record at a specific position,you need
to loop through all the records before it to get the record.

This will waste a lot of memory and operation time. An easier way to get to the requireddata can
be achieved using fseek () .

As the name suggests, fseek () seeks the cursor to the given record in the file.

Syntax of fseek()

fseek (FILE * stream, long int offset, int whence);

The first parameter stream is the pointer to the file. The second parameter is the position of the

record to be found, and the third parameter specifies the location where the offset starts.

Whence Meaning

SEEK_SET | Starts the offset from the beginning of the file.

SEEK_END [Starts the offset from the end of the file.

SEEK_CUR | Starts the offset from the current location of the cursor in the file.

29

Chapter 2. The Files Algorithms and data structures 2

Example 5: fseek()

#include <stdio.h>
#include <stdlib.h>
struct threeNum
{
T Tl 2., G185

}i

int main ()

{

inE s

struct threeNum num;

FILE *fptr;

if ((fptr = fopen("C:\\program.bin","rb")) == NULL) {
printf ("Error! opening file");

// Program exits if the file pointer returns NULL.
exit (1) ;

}

// Moves the cursor to the end of the file

fseek (fptr, -sizeof (struct threeNum), SEEK END);
for(n = 1; n < 5; ++n)

{

fread (&num, sizeof (struct threeNum), 1, fptr);
printf("nl: %d\tn2: %d\tn3: %d\n", num.nl, num.n2Z,num.n3):;
fseek (fptr, -2*sizeof (struct threeNum), SEEK CUR);

}

fclose (fptr);

return 0;

30

Chapter 2. The Files Algorithms and data structures 2

This program will start reading the records from the file program.bin in the reverse order (last

to first) and prints it.

7. Conclusion

The basics of files, file types, and different operations on files have been introduced in this

chapter. The next chapter will be devoted to linked lists.

31

Chapter 3. Linked Lists Algorithms and data structures 2

Chapter 3: Linked Lists

1. Introduction:

In the first semester, we learned that a program comprises a set of data and a set of instructions,
with the data stored in memory as variables. A variable is a memory location characterized by an
address, name, type, and value.

- Address: Each variable stored in memory is identified by an address, a natural number
indicating its location. Typically expressed in hexadecimal (e.g., 0x5A63).

- Name: An identifier used by programmers to reference the stored value; the variable's
name is manipulated instead of the address (e.g., "weight").

- Type: In computing, everything is represented in Os and Is. The type dictates how to
interpret these binary values and specifies the size to be reserved in memory, including the
number of bits and allowable operations (e.g., "int" for a 32-bit integer).

- Value: The content of the bits composing the variable's value, often changing during

program execution (e.g., "15").

When the program encounters a variable declaration statement (e.g., int age;), it instructs the
operating system (Windows) to allocate a memory space of size x, depending on the type. After

reservation, the system returns the memory address usable as a variable.

To retrieve a variable's value, you simply use its name. However, to obtain its address (location
in memory), the algorithm utilizes the "@" symbol before the variable name, and in C, the "&"

symbol precedes the variable name.

Example:

write ("value of age=", age," its address=", (@age);

printf ("value of age = %d its address = %p", age, &age);

Here, age is the variable value, and &age is its memory address. The %p format treats &age as a
hexadecimal memory address, which can also be displayed in decimal using %d. It's important to

note that the address may change each time the program is run.

32

Chapter 3. Linked Lists Algorithms and data structures 2

2. Pointers

A pointer is a variable whose value points to an address in the computer's memory. This address
can be associated with either a variable or a program. Pointers are employed for various purposes,
including passing parameters by address, dynamically reserving memory, defining recursive types

(such as lists, stacks, and queues), and other applications.

Example: Variable Memory Content
Memory can be conceptualized as an array numbered from 0 to theName address

memory capacity minus one. In the following illustration, two 0x0000

variables have been allocated. The first is an integer named "age," 0x0001

situated at address 0x0276, holding the value 19. Here, the "0x"p 0x0002 0x0276
denotes that the number is expressed in the hexadecimal system 0x0003 /,,/
(16) — specifically, 0x0276 corresponds to 630 in the decimal ‘/

system. age 0x0276 19

The second variable, denoted as "p," holds the value 0x0276. This 0x0277

value signifies the location of the variable "age." In other words, 0x0278

we can state that "p" points to "age."

The Creation

To create a pointer variable in the algorithm, we prefix the variable type with the symbol *. This

results in the following format: | var pl, p2 :"type

To create a pointer variable in C, we add * before the variable name | Type *p1,*p2;

Here ~ or * indicates that the variable is of the pointer type, i.e. a memory address, while type is
the type of the contents of that location.
Example : We declare six variables x and y of integer type, pl and p2 of type pointer to integer, z

of type real, and pz of type pointer to real.

int x, *pl,y,*p2; Var x, y: integer pl, p2: “integer

float z, *pz; z : real pz : “real

When declaring a variable, it initially holds an undefined value. It is advisable to set it to NULL
in uppercase, signifying that the pointer does not point anywhere (defined within stdio.h,

representing the number 0).

33

Chapter 3. Linked Lists

Algorithms and data structures 2

pl= NULL;

The variable p1 can take the address of variable x or the value of variable p2, but it cannot take

the address of variable z, the address of p2, or the value of pz.

Valid Invalid
The Explanation
Transactions transactions

pl=&x; pl=x; pl is a pointer and x is an integer

p2=pl; pl=&z; pl is an integer pointer and &z is a real address

pz=&2; pz=pl; pz is a pointer to a real and p1 is a pointer to an integer
p2=&pl ; P2 is a pointer to an integer, but &p1 is the address of a

pointer to an integer.

pl=6&(0x0276) ; |Must be a variable, not a number.

It is crucial to distinguish between the address stored in the pointer and the address of the pointer

itself. The pointer, being a variable, possesses an address similar to other variables. Consequently,

its address can be assigned to another pointer. However, in such a scenario, the second pointer type

must be the address of a pointer of the first type.

For example: x is of integer type (int), and px contains the address of x, so its type is (int*) and

ppx contains the address of px, so its type is (int**) as shown in the following diagram:

3 B 91 e 2aiad Trik™ Int

5

Ppx Px b4

It is declared as follows:
Int =&, px,**ppxy x=5H;

pPX=&4X; PPX=&PX;

typedef can be used to create new types and the above statement becomes something like this:

typedef int* pint; typedef int** ppint; pint px;

ppint ppx;

34

Chapter 3. Linked Lists Algorithms and data structures 2

Usage:

It's rare that we treat memory addresses as direct numbers, but we treat them as addresses for
existing variables. To get the address of a variable, we use the (@ operation in the algorithm or &
in the C programming language before the variable name, and to retrieve the value of the variable
(Dereference) from its address stored in a pointer, we use the symbol * after the variable name
in the algorithm and * before the name of the variable in the C programming language.

p<@Ex = p* & X p=& X = *p & X

35

Chapter 3. Linked Lists

Example:
C The Algorithm memory The Explanation
int Var X, Y
X, *PLl, ¥, *P27 linteger
pl, p2 &+ &
integer
x=3; y=4; X<—3 y<4 x B pl
Iy 4— _pZ
Pl=&X; P2=&Y; |ple—@x k B3 ¥ pl Here pl contains the address of x and p2|
p2< @y - : contains the address of y
y @ mt|p2
*pl=5; p1he-5 X 5 #-pl |[We assign the number 5 to the variable
- whose address is at pl, and at this point it
v Dﬂpz is the variable x, as if the variable x had a
second name, which is *p1
can be replaced by the x=5 statement;
Pl=p2; pl p2« X U \/ pl We assign the value of p2, which
Bim represents the address of y, to p1, so that y,|
Y Ré *pl, and *p2 become the same
variable at that time.
*pl=6; pl7«6 X U L/‘pl 'We assign the digit 6 to the variable
Q/ B whose address is in pl and at this point it
Y P2 lis the variable y
can be replaced by the y=6 statement; or
*p2=6;
Notes:

Algorithms and data structures 2

To comprehend pointers better, it is always advisable to visually represent variables, with

the pointer depicted as an arrow pointing to the variable carrying its address. Additionally,

we symbolize a pointer with a value of NULL, indicating that it does not point to any

36

Chapter 3. Linked Lists

Algorithms and data structures 2

location.

e A pointer is always of a simple type, whereas the variable whose address it holds can be of

a complex type, such as an array or structure.

e Attempting to retrieve the value of an uninitialized pointer or a NULL value will cause the

program to terminate.

o A value (variable address) must be assigned to the pointer before attempting to

retrieve the value it points to.

o Before retrieving the value that the pointer points to, it is crucial to ensure that the

pointer is not null.

e Understanding the passing of parameters by address in subroutines becomes possible with

these concepts.

Example
C memory The Explanation
void exchange (int *x, int *y) { has b Here x and y are two pointers
AR B E| and when calling the function
T =
*;ti/’ h:S @m L |we assign x the address of]

}
int a=5,b=3; exchange (&a, &b);

variable a i.e. x=&a and y the
address of variable b i.e. y=&b
and inside the function
exchange to obtain the variable]
whose address x carries we use
the operation * where *x at this|
moment represents the variable
a and

*y represents the variable b

37

Chapter 3. Linked Lists

Algorithms and data structures 2

3. Pointer Operations

Suppose that P and Q are pointers and 1 is an integer. The following table summarizes the

operations that can be performed on pointers:

Algorithm (Operation Type of 2nd Type of Example |Observation
operation C Operator result
t + Int Pointer P + i Returns a pointer to the i™ element after P in
an array
++ Pointer P-++ IReturns a pointer to the next immediately P
element in an array
- - Int Pointer P-i Returns a pointer to the i element before P
in an array
-- Pointer P-- IReturns a pointer to the clement
immediately preceding P in an array
- - Pointer of the Int P-Q IReturns the number of items between P and
same type Q where P and Q should point to the same
array
= = Pointer Boolean P==Q This is true if P and Q have the same
address, i.e. they point to the same place
1= Pointer Boolean P !=Q This is true if P and Q are different
& * Value Type [*P To retrieve the value whose address it
contains

4. Dynamic Memory Management

The method we've known for reserving variables in memory so far is called static reservation. In

static reservation, the variable is declared at the beginning of the program, and the compiler

automatically reserves the necessary memory. The variable persists until the end of the program's

execution (or until the end of a subroutine in the case of a local variable). However, there are

situations where we need to allocate a dynamic amount of memory, such as an array with N

elements, and N is only known at runtime. In such cases, we declare a pointer, and when N

becomes available, we dynamically reserve the array.

Developers have a set of functions that enable dynamic memory management during runtime.

38

Chapter 3. Linked Lists Algorithms and data structures 2

In algorithm:
There are three procedures for dynamic memory management:

1. allocate(): Used to reserve an array, taking the pointer's name (array name) and the
number of elements as parameters.

allocate(array name, num elements)
Example:
allocate (T, 10)

2. reallocate(): Changes the size of the array, either by increasing or decreasing. It takes the
pointer's name (array name) and the new number of elements (new size) as parameters. It
preserves the values of the previously reserved elements and removes excess or adds new
elements to the array.

reallocate (array_name, new_size)
Example:
reallocate (T, 15)
3. deallocate(): Deletes the reserved array created with allocate(). It takes the pointer's name
(array name) as a parameter.
deallocate (array name)
Example:
deallocate (T)

After creating an array "t" using allocate(), its elements can be accessed either by square brackets
[] or by the retrieval operation *, where the pointer "t" contains the address of the first element,
i.e., @t[0] = tand t* =t[0]. To get the address of the second element, "t[1]," add 1 to "t," i.e., @t[1]
=t+ 1, and (t + 1)* =t[1]. Therefore, the address of "t[i]" is t + 1, i.e., @t[i] = (t + 1) and (t +)" =

t[i].

39

Chapter 3. Linked Lists

Algorithms and data structures 2

Example:

algorithm

memory

The Explanation

var t : “real n:integer

LT

A pointer “t” and a variable “n
representing the number of its elements

are declared

begin
write("enter number of
elements")

read(n)

Let “n” take 3

allocate (t ,n)

'3 [T

allocate() reserves an array of three

elements and sets its address to t

t[0]€ 1 t[1] € 2t[2]€3
th €1 (t+1)N €2 (t+2)" €3

[ENEEE

We fill in the table where we can use the
square brackets [] or use * where t[i] &
fEEae

reallocate(t,n+2)

It
[(aT2TsT 1]

Calling reallocate() resizes the array to
5

t[3] €4 t[4] €5
(tH3) 4 (tH4)» €5 €

We fill in the two added elements

t
[J»2[2]3]4]5]

deallocate(t)

it n
L

'We call deallocate() to remove the

array

40

Chapter 3. Linked Lists Algorithms and data structures 2

In C:
Memory management in C differs slightly from algorithms. Before delving further into it, we

need to familiarize ourselves with "sizeof" and type casting.
4.1. The "sizeof" operation

A variable occupies more or less memory space depending on its type. For instance, a variable of
type char takes up one byte, while a variable of type int requires either two or four bytes, depending
on the C version. To determine the size required for a specific type, we use sizeof(), which takes
the name of the variable or the name of the type as an argument and returns the number of bytes it

needs in memory.

int sizeof type;

Example:

float t[20];

printf ("char: %d bytes\n", sizeof (char));
printf("int : %d bytes\n", sizeof(int)):

printf ("double: %d bytes\n", sizeof (double));

printf ("the size of t: %d bytes\n", sizeof(t));
printf ("the size of t:%d bytes\n", 20*sizeof (float));

that displays on the screen

char: 1 byte
int: 4 bytes
Double: 8 bytes
T size: 80 bytes
T size: 80 bytes

The size of an array can be found by multiplying the size of a single element by the number of

elements.
4.2. Type Change: Casting

Sometimes, we need to convert a specific value from one type to another. To force the compiler to

change the type of a specific value, we use the following formula:

41

Chapter 3. Linked Lists

Algorithms and data structures 2

(type) expression

Where the expression is converted to type

Example 1

int A=8,B=3;

float R=A/B;

Since operators A and B are integers, the
operation performs integer division, resulting in|

R = 8/3.

printf ("no casting R=%f \n",R); |no casting R=2.000000

R=(float)A/B;

'We convert the value of A (not the variable A) to
a real number, and then we perform the division

process, so the operation becomes R

= 8.0/3.
printf ("with casting R=%f with casting R=2.6666666
\n",R) ;
Example 2

1INt X, pl;

An integer and a pointer to an integer

float y=2, *p2;

A real number and a pointer to a real number

%= (int)y:;

It converts the value of y to an integer and puts it in x, so X

takes the value 2

p2=&YV;

p2 takes the address of'y

pl={ibt*)p2;

Converting the address of a float to the address of an int, but
the address of the variable remains in both variables, which is

the address of y

X oy
p2p

pl_"pJ

-~ ‘

Displays x=2

printf ("*p2=%
Xat *p2) i

PEIHLE ("x=%d A" %) ;
i

Displays *p2=2.000000 the same as y

42

Chapter 3. Linked Lists Algorithms and data structures 2

printf ("*pl=%d Displays *p1=1073741824

does not give the same number

\n", *pl) ; Because translating the bits of a real number into an integer|

4.3Memory Management in C

Dynamic memory management in C is done using four functions defined in the stdlib library:

e ‘'malloc()’ (memory allocation, meaning to reserve memory): It instructs the operating

system to reserve the required amount of memory.
volid * malloc(int size);

It takes the required memory size (number of bytes) as a parameter and returns a pointer to the
reserved memory. If the process fails due to insufficient available size, it returns NULL.
Example:
float *t;
t=(float *)malloc(l0*sizeof (float));

t= CEToat) malloc(10* sizeof (float V)i
Table |Convert to 0 reserve umber of he size of each ype of each
‘ Name |Pointer Type he table items lement element

e ‘free()': This function is used to return memory previously reserved by the operating

system's ‘'malloc()’, allowing it to be used by other programs.

void free(void * pointer);

It takes a previously reserved pointer as a parameter. It is recommended to set the pointer to
NULL after calling "free()" to ensure that the pointer is no longer pointing to valid memory and to
avoid potential errors.
Example:
free(t):

e ‘realloc(): This function is used to change the size of the reserved memory, either by

increasing or decreasing it.
void * realloc(void * pointer, int new size);

Where the function calls 'malloc()’ to reserve a new block of memory with the size of
‘new_size’, then copies all the values from the "pointer" array to the new location (or deletes

the extra elements if 'new size’ is smaller than the old size). After that, it deletes the old

43

Chapter 3. Linked Lists Algorithms and data structures 2

reserved array by calling “free()’. If the operation succeeds, it returns a pointer to the new location;
otherwise, it returns NULL.
Example:

t=(float*)realloc(t, 20*sizeof (float));

e “calloc()': Similar to "'malloc()’, but this function puts zeros in the reserved memory.

void * calloc(int nb element, int element size);
It takes 'nb_element’, representing the number of items in the array, and ‘element size’,
representing the size of each element. It returns a pointer to the allocated memory with zero-

initialized values.
Example:

t=(float*)calloc(10,sizeof (float));
Observation:

e In the function lesson, we learned that 'void" means the function returns nothing, while
‘void*' means the function returns a pointer of an undefined type.

e The 'void*" type needs to be converted to the specific pointer type that will hold the
address. This is done by placing the pointer type in parentheses before the "malloc’,
“calloc’, and ‘realloc’ function names. However, this conversion is not necessary in C++,

e To use these functions, you need to include the ‘stdlib® or “alloc’ library by using the
following statement:

#include <stdlib.h> #include <alloc.h>

The “sizeof” operation is not a function, so parentheses can be omitted. When reserving memory,

we follow these steps:

1. Reserve memory with "'malloc’.
2. Ensure that the allocation process has completed successfully by using "if (pointer !=
NULL)".

3. When finished using the allocated memory, return it to the system using "free'.

44

Chapter 3. Linked Lists

Algorithms and data structures 2

Example

C

The Explanation

#include <stdio.h>

#include <stdlib.h>

[nclusion of the STDLIB library

int main(void) {

char *str;

Declaring a char pointer

str

(char *) malloc(4d*sizeof char);

allocating an array for 4 characters:

str[0]="A'"; str[l]="'3S"'; str[2]="D";

Populating the array with the string "ASD"

= (SErt S U O

str[3]1="\0"; using [] and the symbol "0' to indicate the end of
the string:
=sEr=tA s (sSEr bl =ts (S Erd 2) =Tl Populating the array with the literal string "ASD"

using the retrieval operation * where

*(str+1) < str(i]

printf ("String is %s\n Address is

%p\nll’

To display the string and its address, noting that

str, str); & is not used because str is already an address:
str = (char*) realloc(str, 5*sizeof char); Changing the capacity of the array from 4 to 5:
str[3]="2"; str[4]1="\0"; Filling in the last two characters so that the string

Eletr+3)="2"; *(str+4}="\0";

lbecomes "ASD2":

printf ("String is %s\n New address is

$p\n", str, str);

Displaying the string "ASD2" and its new

address:

free(str); return 0;

}

Returning reserved memory:

4.3. Pointers and matrices in C

Matrices in C are arrays in which each element is an array. We want to create an M[3][4] matrix

with three rows and four columns. Suppose we have three arrays: M0, M1, and M2.

float MO[4],M1[4],M2([4]
These arrays can be created using pointers

float *MO,*M1, *M2;

MO=(float *)malloc(4*sizeof (float)):;
Ml=(float *)malloc (4*sizeof (float));
M2=(float *)malloc (4*sizeof (float));

Note that M0, M1 and M2 are all of the same type (float *), so they can be replaced by an array M

of type (float *).

45

Chapter 3. Linked Lists Algorithms and data structures 2

float * M[3];
for(int i=0; i<3; i++)
M[i]=(flocat *)malloc(4*sizeof (float)):;

Now, pointers can be used to create the array ‘M’

C memory The Explanation

float **M; M /An M pointer is declared to be of type float

[] -

M= (float**) malloc(3*sizeof(float*));

@ o* An array M is created, which contains 3
M 1 elements representing the number of rows.
i The type of each element is float*.

for(int i=0; i<3; 1i++)

M[i]=(float*) malloc(4*sizeof (float)):

M
q

_|:3 1 2 3 We create three arrays, each representing a
@ row in the matrix. The number of columns is|

P
L 4, and the type of each column is float.

M =

*(M+i) can be used instead of M[i].

Any element of the matrix can be accessed using square brackets '[]* or by using the dereference
operator “** where:

M[i][j] & *(M[i]+j)

M[i][j] & *(*(M+i)tj)

using typedef

typedef float ** matrix;

typedef float * table;

matrix M;

M= (matrix)malloc (3* sizeof (table));

for(int i=0; i<3; i++)

M[i]=(table) malloc(d4*sizeof (flcoat));

46

Chapter 3. Linked Lists Algorithms and data structures 2

Note : A static array in C is a constant memory address that cannot be changed.
Example:
1Bt *p.E[10] ;

p=t; Correct because t 1s the address of the first element

t=p; Not accepted because t is a constant that cannot be changed.

47

Chapter 3. Linked Lists Algorithms and data structures 2

5. Linked Lists

5.1 Introduction

In programming, to process data of the same type (e.g., student information), we neced Arrays.
Arrays are an important concept in any programming language because they allow quick
access to their elements. However, they have two drawbacks:

e The elements in the array must be contiguous in memory.

e Itis not possible to insert or delete items in the table without recreating the table again.

So we need another data structure known as a Linked list.
5.2 Definition

Linked lists are a recursive data structure composed of nodes of the same type, connected to
each other by pointers. Unlike arrays, these nodes can be in non-contiguous locations in
memory. Linked lists are made up of items (records, nodes, or cells), and each item contains
one or more fields to storedata and a pointer (link) to the next item in the list.

This structure allows you to change its dimension by inserting or removing items from any
positionin the list. To access any item in the list, you have to start from its header and go
through all the itemsbefore it, which can take longer than going directly to the items in an
array. So, we say that it is a lineardata structure as opposed to the array structure that allows

random access.
5.3 Representation

In C, a node is represented using "struct" structures, while a header is represented by a
pointer.

To simplify the explanation, we use a single integer data field called "data" for all records
in the list, instead of using specific data fields for each record type (such as student
information, last name, first name, date, etc.).

The following figure illustrates the structure of linked lists:

¥

Datal e » | Data2 |¢l> ..e——>| Data n

Head data pointer NULL

48

Chapter 3. Linked Lists Algorithms and data structures 2

5.4 The Declaration

Declaring the type of elements or nodes

Cc Algorithm
typedef struct Node { Node structure Data : integer
int data; next :* Node
struct Node * next; end_structure
} Node;

In the structure of linked lists, "data" represents data stored in the list, such as a student's first
andlast name, the date of an event, and so on. This field can be replaced by any other variable
that corresponds to the type of data you want to store in the list.

The "next" field is a pointer that contains the address of the next item in the list, or NULL if it
doesn't point to any item. This field is important because it allows the nodes to be linked to
each otherto form the linked list.

Declaring the Header Type

typedef Node* List; Type List: ~ Node

This means that List is the same as Node*.

Example:
List head; var head: List A simple pointer-type variable that points to the first
element
fead [|
Node el, e2,e3; el, 22, e3:Node 3 compound variables of tvpe Node
el.data=1; el .data—]l eZ.data2 Head el e2 e3
e?.data=2; e3.data—3 | [(t]] [21] [3]]
e3.data=3;
el.nexlbl=8e2; el.nexl. @e2 2,.nexbl. a3l Head el e2 e3
eZ.nexl=ge3; | | [1[@e2d 2 [@e3y 3]]
eld.next— NULL; eid.next.- NULL Head el e2 e3
head=&=l; head—#sl | @clgl b1 | @c2¢ |2 | @c3 g o3 [\
head->data=4; head”.data-4 Head el e2 e3
head-»next->data=5; (head”. next)”.data-5 | .@_‘:clJ_L4 | .@324_|’5 | @‘lcj ._l_.} [\I
head= head->next; head— head®.next; Head el e e3
head->data-=6; head”.data—6: | (@e2 | 4 | @cg¢ $h,| @e3 !_l_.g N
head= head->next; head— head”™.next; Head e e2 e3
head->data="7; head”.data-7; | (@e3 | 4 | @EEJ—M | (@e3 o—{p7

The -> operation in C language
Since the 'head' pointer points to the 'el' element, the variable pointed to by 'head' and 'el’ are
equivalent, so the expression '(¥*head).next' can be used to access the 'next' field of the 'head'
point element instead of 'el.next’
In C, we use the '->' operator instead of '(*). to access the fields of the structure pointed to by

'head'. The expression 'head->next' is therefore equivalent to '(*head).next' to access the 'next'

49

Chapter 3. Linked Lists Algorithms and data structures 2

field ofthe element pointed to by 'head'

el.next ¢ (*head). next < head->next

el.data=5; & (*head) .data=5; © head->data=5;

Note that head.data is incorrect because head is a pointer, not a structure.
The 'head', 'el.next', 'e2.next' and 'e3.next' pointers are all of the same type, which means that

it ispossible to make assignments between them.

The Last Element

The last item in the list has no next item, so its 'next' pointer is assigned to NULL. When
traversingthe list, NULL is used to check whether the last item has been reached or not.
e3->next= NULL;
head= NULL; It's an empty list

The traversing of a linked list

The following example shows how to navigate through items in a linked list.

Let's say we have the following list:

Since "el.next" points to "e2", we can make "head" point to "e2" by doing the following:
"head =el .next;".

Now that "head" points to "e2", then "head->next" is equivalent to "e2.next".

head= &e2© head= el.next©e head= head->next

while (head!= NULL) { hile (head#NULL) do
do something Do a southings
head = head->next; head—head” .Next

1 end while

So, to switch from one node to another, we use "head=head->next"
To access all the items in the list, we repeat the process until head takes the value of next from
the lastnode, which is NULL.

Observation:
while (head'!'= NULL) & while (head)
5.5 The Creation

To create a linked list, memory is dynamically reserved from a simple pointer variable.

Suppose we have an empty list with head=NULL; To create a new item, we use the

50

Chapter 3. Linked Lists

Algorithms and data structures 2

malloc()dynamic memory allocation function.

List e, head= NULL;

var e, head: List
head— NULL

Head N e D Two lists are created (Node* pointer)

e = malloc |
sizeof (Node)) ;
e=>data=1;

e=->next= NULL;

ABllocation(e, 1)
e”.data<l
e”.next-NULL

Head

A new "e" element has been created
and its fields have been 1nitialized.

head = e;

e = malloc(
sizeof (Node));
e=->data=2;

head e

[Allocation(e,1)
e™.data-2

Here. "e and head" have the same
address. which means they refer to

the same element.

A new "¢" element has been created
and can be added to the top of the list
by linking it to the first item in the
list with its next field.
e->next=head; head=e:
or at the end
head->next=e

Note in C++

= malloc(sizeof (Node)) ;< e = new Node;

6. Operations on Linked Lists

Now we'll create a set of subroutines to manage lists, such as adding or removing an item,
dend iflaying all items in the list, searching the list, and so on. It is recommended that you

combine all of these functions in a dedicated list library.
Observation

There are several ways to create functions to add or remove an item from the list:
¢ By using functions that take a list as a parameter and return a list. In this case, the list
can be passedby value.
¢ By using procedures and an auxiliary element (sentry) to avoid passing by address.
In this case,the list can be passed by value.

e Using unaided procedures. In this case, the list must be passed by address.

51

Chapter 3. Linked Lists

Algorithms and data structures 2

By using functions that take a list as a parameter and return a boolean value (bool) to tell

us whetherthe operation was successful (true) or not (false). In this case, the list must

be passed by address. We will use the latter method.

6.1 Dend iflaying a list

void dend iflay list(List head) {

while (head

= NULL) {
printf ("$d->", head->data);
head = head->next;

}
printf ("fin\n");

procedure dend iflay list(Listhead)

Begin
while (head # NULL) do
write (head->data,"->");

head ~ head”.next;

end while

printf ("end") :

end

void dend iflay list(List head) {
if (head){
printf ("%d->", head->data);
dend iflay list (head->next);
} else printf("fin\n");

J

We iterate through each item in the list and dend iflay the associated data. We note here that

the list has been passed by value, and so the head of the original list won't be changed if we

change the valueof head, so we use it to browse the list safely.

6.2 List size

Go through the list and add 1 until we get to NULL

int size list(List head) {
int n=0; if (!head)

while (head '!'= NULL) { | return
head= head->next;
n++; }

}

return n;

int size list(List head) {

return 0;

1+ size list (head->next});

function size list(List
head) : integer

var n:integer;

Begin
n0
while (head # NULL) do
n—n+l;

head ~ head”.next:;
end while
size_list_n;

end

52

Chapter 3. Linked Lists Algorithms and data structures 2

6.3 Add an item to the list

The process of adding an item to a linked list takes place in 3 steps:
1. Create and initialize a node
2. Determine the location of the node.

3. Add the node to the list by reassigning the pointers.
Add an item to the top of the list (at the top)

1. Adding an item to the beginning of the list requires changing the head of the list, so
it's important to pass the listby address so that this change is visible in the caller.
Create a new item, and if it fails, return false to the caller

Initialize Item

Replace "next" with "e" to point to the first item in the list

L

Change the head of the list to point to the new item, "aHead and e" are two local

variables that are removed immediately after the procedure is executed

aHs=ad head

| @ @] lleiH2]N
e [e—|oe&]

int add head(List* aHead, int d){ function add head (aHead:"List,
d:integer) :bool
wvar e:List;
Begin
List e = malloc (sizeof (Node)):; allocate(e,1):
if (e == NULL) { if (e = NULL) then
return 0; add_head <«false;
} else
e-> data = d; e”.data~d;
e-> next = *aHead; e”.next—aHead”;
*aHead=e; aHead”—e;
return 1; add _head <«true;
} endif
end

Add an item at the end

1. It's possible that we'll add an element in the header, so we need to pass it by address.

Create anew item

53

Chapter 3. Linked Lists

Algorithms and data structures 2

2. Initialize the element and set NULL to the "next" as this will be the last element

3. If the list is empty, we'll insert it in the head

4. If the list contains at least one item, look for the last item

5. Insert Item Last

int append end(List*aHead, int d){| function append_end (aHead:"List,
List t3; d:integer): bool
List e = malloc (sizeof (Node)); var =, t List;
if (e == NULL) { Begin
return 0; allocate(e,1);
} if (e = NULL) then
append end<«false;
else
e->data = d; e”.data~d;
e->next = NULL; e”.next~ NULL;
if (*aHead == NULL) if (aHead”=NULL) then
*aHead = e; aHead"—e;
else { else
t= *aHead; t—aHead";
while (t-> next != NULL) t= t-> while (t”.next#NULL) do
next; t—t*.next;
end while
t-> next=e; t™.next—e;
} endif
return 1; append_end<«True;
} endif
end

54

Chapter 3. Linked Lists Algorithms and data structures 2

6.4 Remove an item from the list

The process of removing a node from a list takes place in 4 steps:
1. Determine the previous node of the node you want to delete.
2. Keep the address of the node to be deleted in a variable
3. Connect the previous node to the next node of the node you want to delete.
4. Flush the memory reserved by the node you want to delete.
So there are 3 cases, either the list is empty, contains a single item, or contains more than one

item.
Delete the element from the beginning (the head)

1. It's possible that we'll remove an item from the header, so we need to pass the list by

address
2. Ifthe list is empty, there is no item to delete, so we return false.
3. Stores the address of the first item to be deleted in t
4. Connecting the head with the second element
5. Remove the memory reserved by the first item
int delete head(List*aHead) { function delete head(aHead:"List): bool
List t: wvar t:List;
Begin
if (*aHead== NULL) if (aHead” ==NULL) then
return 0; delete head<« false;
else
t = *aHead; t—aHead”;
*aHead =t-> next; aHead~ t”.next;
free(t); deallocate (t);
return 1; delete head¢True;
} endif
end

Remove an item from the end

1. It's possible that we're removing an item from the head, so we need to pass the list by
address.t is the last element and p is the second-to-last element
2. If the list is empty, there is no item to delete, so we return false

3. If there is only one item in the list, remove it directly from the head

55

Chapter 3. Linked Lists Algorithms and data structures 2

4. If the list contains more than one element, we look for the last element t and the second-
to-last p
5. We set NULL to "next" of the penultimate p, because it has become the last, and we

removethe last t from memory.

[e e -GlelEel kel =N

ple| tle]

int delete_end (List*aHead) { function delete end(aHead:"List): bool
List t, p; var t, p:List;
Begin
if (*aHead== NULL) if (aHead” ==NULL) then
return 0; delete end <«false;
else
if ((*aHead) -»next ==NULL) { if (aHead”.next =NULL) then
free (*aHead) ; dealdeal (*aHead) ;
*aHead = NULL; } *aHead-NULL;
else | else
t = *aHead; t—aHead";
while (t->next != NULL) {p=t; while (t”.next # NULL) deo
t= t->next; p—t tet*.next;
} endwhile
p->next=NULL; free(t) ; p”.next-NULL;
} deallocate (t);
return 1; endif
} delete_end ¢«true;
endif
end

6.5 Delete list

1. We remove from the header until the list becomes empty

2. Or by using the delete head function until it returns false

56

Chapter 3. Linked Lists

Algorithms and data structures 2

void delete list(List*aHead) {

List t;

while (*aHead!= NULL) {

t *aHead;
*aHead =t-> next;

free(t);

procedure delete 1list (aHead:"List)
var t:List;

Begin
while (aHead” #NULL) do
t—aHead";
aHead”~t".next;
deallocate (t);

end while

end

void delete list(List*aHead) {

while (delete head(aHead));

procedure delete list (aHead:"List)
Begin
while (aHead” #NULL) do
delete head (aHead);
end while

end

6.6 Main Program (Use)

printf ("size=%d\n",
dend iflay list (head);
delete head(&head);

size list (head));

delete end(&head);
printf ("size=%d\n",
dend iflay list (head);
delete list (&head);

size list (head));

printf ("size=%d\n",

dend iflay list (head);

size list (head));

return 0;
}

int main() { Begin

List head =NULL; add_head (@head, 3);
add head (&head, 3); add_head (Ghead, 2);
add head(&head, 2); append end (@head, 4);
append end (&head, 4); add head (Ghead, 1);
add head(&head, 1); append end (G@head, 3);
append_end (&head, 5); write("size=",size list(head));

dend iflay list (head);

delete head(B@head);

delete end(@head);
write("size=", size list(head)):;
dend iflay list (head);
delete list (Ghead);
write("size=", size list(head));
dend iflay list (head);

end

57

Chapter 3. Linked Lists Algorithms and data structures 2

e The program will dend iflay

size=5
1->2->3->4->5->end

e Then it will dend iflay
size=3
2->3->4->end

e At the end it will dend iflay
size=0

end

7. Double linked list

In addition to the data and the pointer that points to the next item, a doubly linked list contains
another pointer, usually called a "prev," that points to the previous item. This pointer makes it
easier to navigate through the list in both directions, simplifying the process of removing or
inserting an itembefore the selected one.

The following figure shows the structure of a doubly linked list

e iNehizelelsleleH el

A A

e o R — -

7.1 Declaration

typedef struct Node { Node structure
int data; Data: integer
struct Node* next, * prev; | next, prev :"Node

} Node; end_structure

"data" represents the data stored in the list. "Next" is a pointer that contains the address of
the nextitem, while "Prev" is a pointer that contains the address of the previous item.

The add and remove operations are as follows

58

Chapter 3. Linked Lists

Algorithms and data structures 2

7.2 Add an element at the beginning (header)

Il

e-> next *aHead;

e”.next—aHead”

Il

e-> prev NULL;
if (*aHead!= NULL)

(*aHead) ->prev = e;

e”.prev-NULL
if (*aHead # NULL) then

aHead” .prev«e

END IF

*aHead=e;

aHead™—e

1. Change "next" from "e" to point to the first element

2. It points to NULL (first element)The "prev" of the first element, if it exists, points to the

new element.

3. Change the head of the list to point to the new item

7.3 Add an item at the end

e-> next = NULL;

e”.next— NULL;

if (*aHead == NULL) {

I

e-> prev NULL;

if (aHead"=NULL) then
e”.prev-NULL;

t= t-> next;

*aHead = e; alHead”—e;
}
else | else
= *aHead; t—aHead";
while (t-> next != NULL) WHILE (t”.next#NULL) do

t—t".next;

END WHILE

E-> prev = t;

t-> next=e;

e”.prevt;
t*.next—e;

END IF

1. NULL because it will be the last element

2. In case the list is empty, it is appended in the header, while prev says NULL

3. If the list contains at least one item, the last item is searched for

4. The prev of the new item refers to the last item in the list. Insert Item Last

7.4 Delete the element from the beginning (the head)

1. Stores the address of the first item to be deleted

2. Bind with the second element. If the list is not empty, the "prev" of the first item must be

NULL

59

Chapter 3. Linked Lists Algorithms and data structures 2

3. Flush the memory reserved by the first item

t = *aHead; t—aHead”;

*aHead =t-> next; aHead~ t”.next;

if (*aHead!= NULL) if (*aHead # NULL) then

(*aHead) ->prev = NULL; aHead” .prev~ NULL;
END IF

free (t); deallocate (t);

7.4 Remove an item from the last
1. In case the list contains more than one item, the last item t is searched, and there is no
need tosave the second-to-last one because it is accessible.
2. We get the second-to-last one by means of "prev" of the last t. We set "next" to NULL

of thesecond-to-last because it has become the last. We remove the last t from memory

t = *aHead->next; t—aHead”;
while (t->next!= NULL) WHILE (t".next # NULL) do
t= t->next; tt”.next;
END WHILE
p=t->prev; p—t”.prev;
p —->next=NULL; free(t) ; p”.next~NULL;
deallocate (t);

60

Chapter 3. Linked Lists Algorithms and data structures 2

Remark:

The "prev" of the first item can be used to refer to the last item in the list, speeding up the

processof accessing the last item for addition or deletion.
8 Special Linked Lists

In addition to linked single and double lists, there are linked single and double circular lists
The circular list is a normal linked list, except that the last item is not NULL, but refers to the
first item in the list,as 1s the case in the double circular list, where the "next" ofthe last item

refers to the first item and the "prev" of the firstitem refers to the last item.

T2 |& 3 | &y

Al]

head

8.1 Queues

The queue is an abstract data structure that is used to store a set of records of the same type. It
offers two essential operations: the addition of a new element, also known as an enQueue, in
French: enfiler, and the deletion of an element, known as a deletion (in English: deQueue, in
French: défiler). This structure respects the FIFO (First In First Out) property, which means
that the first item added isthe first item to be deleted. In other words, the output order is the
same as the input order.

Example: list of events, queue, list of files sent to the printer, etc.

A queue can be implemented using an array using two indices totrack the position of the head
(or "start") and the "end" (or "end" in English). When an item is added to the queue, it is
placed at the queue

position and the queue index is incremented. Similarly, when an item is removed from the
queue, it isremoved from the head position and the end hint is also incremented. If the end of
the array is reached,you can go back to the beginning of the array to continue adding items if

slots are available, or you can allocate a new, larger array and copy the existing items to it.

o+
L
(=}

item

end” ~start

61

Chapter 3. Linked Lists Algorithms and data structures 2

8.1.1 Using the arrays

1. Declaration: A structure is created that contains a dynamically allocated table of items
in memory, a start location "start" for adding, an "end" location for deletion, and
"capacity" thatcontains the number of items that can be added to the table.

2. 1it(): The table is created and set to -1 to start and end to indicate that the queue 1s
empty. If the creation process fails, the function returns false.

3. isEmpty(): The queue is empty if "start" and "end" are -1.

4. isFull(): The queue is full if the value of "start+1" is the same as the value of "end", and
we use

mod "%" if we reach the end of the table to bring it back to the beginning.
5. enQueue(): Makes sure the queue is not full, then adds 1 to start and adds x to the table.
6. deQueue(): Returns the first element of the array to which end points, and adds | to end.

In casethe queue is empty, it informs the user.

Note:

Normally, when a function encounters an error or unexpected behavior situation, it is not
expectedto return a value that could be erroneous or misinterpreted by the calling function.
Instead, it must throw an exception (error) that will be caught and handled in the calling
function or in another functionin the call stack. By explicitly flagging the error, the exception
helps identify the source of the problemand makes it easier to find and resolve the problem.

In C++ you can write
if (isEmpty(Q)) throw -1;

62

Chapter 3. Linked Lists

Algorithms and data structures 2

typedef struct Queue(

int *item;

Structure Queue

item: “integer;

O->start = -1;

O->end = -1;

Q->capacity= capacity;

O->item=
(int*)malloc (sizeof (int) *capacity);
return (Q-> item != NULL;

}

int start, end, capacity; start, end, capacity: integer;
}Queue; end_structure
bool init (Queue *Q, int capacity) { function

init (Q:"Queue,capacity:integer) :bool
Begin

Q~.start —1Q™*.end —-1;

Q" .capacity = capacity;
allocate(Q”.item, capacity):
init~ Q*.item # NULL;

end

boel isEmpty(Queue Q) {
return Q.start ==-1 && Q.end==-1;

}

function isEmpty (Q: Queue) :bool
Begin
isEmpty~ Q.start =-1 and Q.end=-1

(Q.start+1l)% Q.capacity == Q.end;
1

end
bool isFull (Queue Q) { function isFull (Q:Queue) :bool
return Begin

isFull~(Q.start+l) mod Q.capacity =
0 .end

end

void enQueue (Queue Q,int x){
if (isFull(Q)) {
printf ("error: Queue is full");
return;

1
if (isEmpty (Q))
Q.start=0Q.end=0;
else
O.start= (Q.start +1) %
Q.item[Q.start]=x;

}

Q.capacity;|Q.start—(Q.start+1)

Procedure enQueue (Q:Queue, x:integer)
Begin

if (isFull (Q)) then

write ("error: Queue is full");
else

if isEmpty(Q) then

Q.start-0 Q.end-0;

else

mod
Q.capacity

END IF
RQ.item[Q.start]

END IF

—X7

end

63

Chapter 3. Linked Lists Algorithms and data structures 2

int deQueue (Queue Q) { Function deQueue (Q: Queue): Integer
1f (1sEmpty (Q)) { Begin
printf ("error: Queue is empty"):; if (1sEmpty(Q)) then
return; write("error: Queue is empty");
} deQueue —-1;
int x= Q.item[Q.end]; else
if (Q.start == Q.end) deQueue~Q.item[Q.end];
Q.start = Q.end= -1; if Q.start = Q.end then
else Q.start~-1; Q.end--1;
Q.end = (Q.end+1)% Q.capacity; else
return x; Q.end—(Q.end+1) mod Q.capacity
} END IFEND IF
end

8.1.2 Using Linked Lists:

A simple queue implementation using arrays can cause performance issues if the queue is
large orheavily used, as each insertion or deletion may require moving any remaining items in
the array to maintain FIFO ownership. To avoid these problems, it's best to use higher-

performance data structuressuch as linked lists.

To simulate a queue using lists, it is necessary to add and remove items at two different ends of
thelist. For example, you can add new items at the end of the list and remove items at the
beginning of the list. This approach can also be reversed, by adding items at the beginning of
the list and removingitems at the end. In both cases, the list structure allows for quick and
efficient insertions and deletions, without the need for costly item moves as with the array
implementation.

I1. Declaration: We create a structure that contains two fields, the first referring to the first
item in thelist and the second referring to the last item in the list.

2. init(): by assigning a null to first and last.

3. isEmpty(): An empty Queue is an empty list.

4. enQueue():is the same as the "append end" function, and to avoid going through all the
items in the list to get to the last item, we always store the address of the last item in
Q.last. In the case where the list is empty, we add the new element to the start and last,
but if it 1s not empty, we pastethe new element with the last element, and then change
last so that it points to the new element.

5. deQueue():is the same as the "delete head" function, except that the deQueue function

returns theelement that was deleted. So before we delete element t, let's save t-> data in

64

Chapter 3. Linked Lists

Algorithms and data structures 2

X, and then delete it and return the value of x.

typedef struct Queue/(
struct Node* first, *last;
int size;

} Queue;

Structure Queue
first, last:”Node;
Size :Integer:

end_structure

Queue * init () {
Queue *Q=new Queue;
Q->first =NULL;
QO->last =NULL;
Q->size =0;

return Q

}

procedure init (Q: "Queue)
Begin

O0*.first~ NULL;

0" .last— NULL;

end

bool isEmpty (Queue *Q) {
return Q->size==0;

}

function isEmpty(Q: Queue) :bool
Begin
isEmpty— Q.first= NULL;

end

void enQueue (Queue *Q, int x) |

Node *e malloc (sizeof (Node)) ;

e->data p-
e->next = NULL;
if (isEmpty (Q))

QO=->first =e;

procedure enQueue(var Q: Queue,
x:integer)

var c:"Node;

Begin

allocate(e,1);

e”.data~ x;

}
t = Q->first;
x = t =->data;
QO->first = t-> next;

free(t);

else e”.next~ NULL;
Q->last->next=e; if (isEmpty(Q)) then
O->last =e; O.first—e;
O->size++; else
} Q.last”.next—e;

END IF

Q.last—e;

end
int deQueue (Qusue *Q) function ofQueue (var Q= Queue) :
Node* t; int x; integer
if (1sEmpty (Q)) { var t:"Node;
printf ("error: Queue is empty"); Begin
exit(1l); if (isEmpty(Q)) then

printf ("error: Queue is empty");
deQueue—-1;

else

t— Q.first;

deQueue —~ t”.data;

65

Chapter 3. Linked Lists Algorithms and data structures 2

return x; G-firsEL Etunaext 3
} deallocate (t);
END IF

end

8.2 Stacks:
It 1s an abstract data structure consisting of a set of records of the same type, in which only
two operations can be performed: the addition of a new element, this process is called push,
and the removal of an element from the group, this process i1s known as pop, and these
operations take placeat a single end of the group called the top. This data structure has the
characteristic of LIFO (Last InFirst Out), i.e., the last item added is the first to be removed,
and the output order 1s therefore the opposite of the input order.
Example:
Stacks are commonly used in situations where data needs to be processed in reverse order to
theorder in which it was received, such as:

e Memory Management in Computer Systems

e The web browser saves the list of visited pages in a stack.

e The list of operations in Word, for example, is stored in a stack and is used to undo

changes.

Stacks can be implemented using arrays or linked lists, but linked lists are often preferred

because they provide more predictable performance whenadding or removing items.

item |1|2]|3
v
tﬂ p’"'w'

8.2.1 Using the table

1. Declaration: A structure is created that contains a dynamically allocated item element
table, andtop the add or remove location and capacity that represents the size.

init(): The table is created and set to top to 0 to indicate that the stack is empty.
isEmpty():The stack is empty if the top value is 0.

isFull(): If the array is full, top equals capacity.

T I VO N

1. Pop(): The Pop function allows you to decrement 'top' and return the last element it
points to.

6. Push (): The Push function allows you to add the x element to the table and increment

66

Chapter 3. Linked Lists

Algorithms and data structures 2

the 'top' pointer by 1. You need to make sure that the stack (table) is not full.

typedef struct Stack(

int *item;

structure Stack

item:"integer;

if (isFull(s)) {
printf (Merrors Stack ds full1¥);
exit(1l);

}
s.item[s.topl=x;

s.top++;
1

Begin

if (isFull(s)) then
write ("error: Stack is full");
else

s.item[s.top]l «=x;

s.top— s.top +1;

END IF

end

int top, capacity; Top, size:integer;
} Stack: end structure
bool init (Stack *s, int capacity) { function init(s:" Stack,
s->top = 0; capacity:integer) :bool
s-> capacity = capacity; Begin
s->item=malloc(sizeof (int) *size); s™.top-0;
return s->item != NULL; s™. capacity -~ capacity;
} allocate (s”.item, capacity);
init~ s”.item # NULL;
end
bool isEmpty(Stack s){ function isEmpty(s:Stack) :bool
return s.top==0; Begin
} inites.top=0;
end
bool isFull (Stack s) { function isFull (s:Stack) :bool
return s.top==s.capacity; Begin
} isFulles.top= s.capacity;
end
int Pop(Stack s){ function Pop(s: Stack): integer
int x; Begin
if (isEmpty(s)) { if (isEmpty (s)) then
printf ("error: Stack is empty"); write ("error: Stack is empty");
exit(1l); Pop—-1;
} else
s.top—=37 S.top~ s.top -1;
x=s.item[s.top]; Pop~s.item[s.topl;
return x; END IF
} end
wvoid Push (Stack s,int x){ procedure Push(s: Stack, x=: integer)

Chapter 3. Linked Lists Algorithms and data structures 2

8.2.2 Using Linked Lists:
To simulate a stack using lists, the addition and deletion must be done on the same side (at the
beginning or at the end).
1. isEmpty():An empty stack is an empty list.
2. Pop(): The pop function is the same as the delete head function except that the pop
function returns the item that was deleted. So before we delete the first element t, we
save t-> data in x, and then delete it and return the value of x.

3. Push():The push function is the same as the add head function

bool isEmpty(List head) { function isEmpty(head: List) :bool
return head==NULL; Begin
} isEmpty ~ head= NULL;
end
int Pop(List*aHead) { function Pop(aHead:"List): integer
List t; int x; var t:List;
if (*aHead==NULL) { Begin
printf ("error: Stack is empty"): if (isEmpty (aHead”)) then
exit(1l); write("error: Stack is empty"):
} Pop—-1;
t = *aHead; else
*aHead =t-> next; t—aHead”;
x=t->data; aHead— t".next;
free(t); Pop— t".data;
return x; deallocate (t);
1 END IF
end
woid Push(List* aHead, int x) { procedure Push (aHead:"List,x:integer)
List e = malloc(sizeof (Node)); var e:List;
e=> data = %} Begin
e-> next = *aHead; allocate(e,1);
*aHead=e; e”™.data~ x;
} e”™.next—aHead”;
aHead"—e;
end

9. Conclusion

Pointers, dynamic memory management, linked lists, operations on linked lists, doubly linked lists,

and special linked lists were all covered in this chapter.

68

10.

References

Thomas H. Cormen, Algorithmes Notions de base Collection : Sciences Sup, Dunod, EAN
EBOOK : 9782100702909, 2013.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest Algorithmique - 3éme édition -
Cours avec 957 exercices et 158 problémes Broché, Dunod, 2010, ISBN-10 : 2100545264,
Damien Berthet, Vincent Labatut. Algorithmique & programmation en langage C - vol.l.
Licence. Algorithmique et Programmation, Istanbul, Turquie. 2014, pp.232. cel-01176119v1
Damien Berthet et Vincent Labatut. Algorithmique & programmation en langage C - vol.2 :
Sujets de travaux pratiques. Licence. Algorithmique et Programmation, Istanbul, Turquie.
2014, pp.258. <cel-01176120>
https://elearning.univ-msila.dz/moodle/course/view.php?id=10217&lang=fr

Damien Berthet et Vincent Labatut. Algorithmique & programmation en langage C - vol.3 :
Corrigés de travaux pratiques. Licence. Algorithmique et Programmation, Istanbul, Turquie.
2014, pp.217. <cel-01176121>

John Henry Mueller, Luca Massaron. Les algorithmes pour les Nuls grand format, Pour les
nuls, 2017, ISBN-13978-2412025901.

Luca Massaron, John Paul Mueller, Jean-Pierre Cano, Marc Rozenbaum. Les Algorithmes
pour les Nuls - 2e édition, Pour les nuls, 2024, ISBN-13978-2412094860.

Alan Grid, La Pogrammation pour les Débutants Absolus, Independently published, 2023,
ISBN-13979-8378538997.

Rémy Malgouyres, Rita Zrour et Fabien Feschet. Initiation a [’algorithmique et a la
programmation en C : cours avec 129 exercices corrigés. 2ieme Edition. Dunod, Paris, 2011.

ISBN : 978-2-10-055703-5.

69

