University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science

Department of Mathematics and Computer Science

Algorithms and Data Structure 1

Full Algorithms and Data Structure 1 Course

and Tutorials

Level : 1st YEAR LICENCE (LMD) in Mathematics and

Computer Science

Semester: 1st Semester (S1)

m » ® C O O

Dr. KADDI Mohammed

Associate professor

University of Adrar

4 C O O Z2 » =

| Dr. KADDI Mohammed

Foreword

This handout, a crucial resource, is specifically designed for first-year LMD students in
the Mathematics and Computer Science field. It serves as a comprehensive course manual
for the subject "Algorithmics and data structure 1", aiming to introduce the fundamental
notions of algorithm and data structure. It's important to note that students should have a
solid foundation in computer science and mathematics.

This handout is structured into six chapters as follows:

In the first chapter, a brief history of computer science and an introduction to algorithms are
given.

The second chapter presents a simple algorithm's basic notions and its C language
translations.

Conditional structures (in algorithmic language and C) are presented in the third chapter.
The fourth chapter describes the different control structures (loops) in algorithmic language
and C that can be used in an algorithm (For, While, Repeat, and nested loops).

Chapter five covers the use of arrays and strings in programming.

Finally, chapter six is devoted to custom types such as enums and records.

A list of bibliographical references is given at the end of this manuscript.

Table of contents

Page
Foreword 01
Table of contents 02
Chapter 1: Introduction 04
1. Introduction 04
2. Computer Science 04
3. Information 06
4. Computer 06
5. Data units of measurement 12
6. Introduction to Algorithmic 13
7. Basics of an algorithmic language 17
Chapter 2: Simple Sequential Algorithm 27
1. Introduction 27
2. Notion of Language and Algorithmic Language 27
3. Parts of an Algorithm 33
4. Data: Variables and Constants 34
5. Data Types 35
6. Basic Instructions 36
7. Building a Simple Algorithm 38
8. Representing an Algorithm with Flowcharts 39
9. Translation into C Language 40
10. Structure of a C Program 47
Tutorial 01 50
Tutorial 02 51
Chapter 3: Conditional structures (in algorithmic language and in C) 54
1. Introduction 54
2. Simple Conditional Structure "if then" 54
3. The Complex Conditional Structure "if then else" 55
4. The Multiple-Choice Conditional Structure "switch" 58

5. Branching Instructions 61

Tutorial 03 63
Tutorial 04 65
Chapter 4: Loops (in algorithmic language and in C) 67

1. Introduction 67
2. The "While" Loop 67
3. The "Do...While" Loop 69
4. The "for" loop 71
5. Nested Loops 75
6. Loop Equivalence 76
7. Loop Termination Commands 73
Tutorial 05 79
Chapter 5: Arrays and strings 82

1. Introduction 82
2. The Array Type 82
3. Multi-Dimensional Arrays 85
4. Strings 920
Tutorial 06 93
Chapter 6: Custom Types 95

1. Introduction 95
2. Enumerations: (Enumerated Type) 95
3. Structure type (or record) 96
Tutorial 07 101
References 103

Algorithms and Data Structure 1 Chapter 1: Introduction

Chapter 1: Introduction

1. Introduction
Primitive people were the first to use the counting device. They used stones, bones,
and sticks as counting tools. Over time, the human mind and technology leaped
forward, and the development of other computing devices began.
Data structures and algorithms (DSA) are essential for any programming language.
Every programming language has its data structures and different types of algorithms
to handle these data structures.
Data structures organize and store data effectively when performing data operations.
The algorithm is a step-by-step procedure, which defines a set of instructions to be
executed in a particular order to get the desired output. Algorithms are generally
created independently of underlying languages, i.e., an algorithm can be
implemented in multiple programming languages.
Almost every enterprise application uses various types of data structures in one way
or another. As a programmer, I know that data structures and algorithms are essential
to day-to-day programming.
2. Computer Science
2.1 Definitions
- Computer science designates the automation of information processing by a concrete (or an
abstract system.
- Computer Science refers to all of the sciences and techniques related to information
processing.
- Computer Science can also refer to what relates to computer hardware (electronics), and
office automation (bureautique "FR").

- Computer science is the science of automatic and rational processing of information. This

processing is done by a machine called a computer.

Algorithms and Data Structure 1 Chapter 1: Introduction

- Computer science is the science of automatic processing of information through the
computer, i.e., automating the information that we manipulate. Its purpose is to develop and
formulate the set of commands, orders or instructions allowing the computer to be
controlled and oriented during the processing.

- The French translation is « L informatique ».

2.2 Approch
« Computer Science is the automated processing of data (or information) by an electronic device
the computer ».

v" Data or Information: computer manipulates numbers.

» can represent various types of information numbers (calculations or accounting),
text, letters (characters), images or videos.

» converting this information into a series of numbers raises the problem of data
format, coding and standardized formats.

v Automated:

» the processing is defined in a program which runs on its own.
» the user simply provides processing parameters.
» establishing this program is the domain of programming.
v" Processing: these data are:
» creates: automatic acquisition, type text, draw an image, record sound or video.
» analyse: number analysis, finding word occurrences, identifying an object, speech
recognition.
» modify: calculations, typing text, modifying existing text, modifying contrast,
brightness, colors, applying effects.
» archive and restore.
2.3 Terminology

v" Informatics (science de l'information): the study of systems, biological or artificial, that
record, process and communicate information.

v Computer science (/'Informatique théorique): procedural epistemology, the study of
algorithms, software, and computers.

v' Computer engineering (Génie informatique): the manufacture and use of computer

hardware.

Algorithms and Data Structure 1 Chapter 1: Introduction

v" Software engineering (Génie logiciel ou ingénierie de logiciel): software modeling and
development.

v" Information techmnology (Technologies de l'information): represents the evolution of
techniques and technologies related to Computer Science.

v" Information and communication technology: (Technologies de l'information et de la

communication TIC).

2.4 Application areas of Computer Science
v" Computer Science for management:
» guide management and management processes in companies,
» areas of activity human resources management, sales administration, purchasing
management, marketing, finance.
v Computer Science scientifique :
» assist design engineers in industrial engineering fields,
» design and size equipment using calculation programs,
» used in design offices to simulate scenarios quickly and reliably.
v Real time Computer Science :
» define software for controlling systems in direct contact with the world.
» aeronautics space, weaponry, miniaturization of circuits.
v Knowledge management: (L'ingénierie des connaissances)
» consists of managing innovation processes,
» bring coherence between the three areas of management, real time, and scientific.
v" Intelligence (Intelligence ou Veille) Economic and strategic :
» use information technologies to search for information (search engines).
3. Information
- Information is an element of knowledge that can be represented using conventions to be
manipulated (stored, processed or communicated) by a computer. It can be: text, sound, image,
video, etc.
- Information is a set of events that can be communicated to the computer. It can be : text, sound,
image, video, etc.

4. Computer

Algorithms and Data Structure 1 Chapter 1: Introduction

- A computer is a set of electronic circuits for manipulating data in binary form, represented by
variations of an electrical signal.

- Computer is a machine capable of processing information and is composed of two parts:
HARDWARE and SOFTWARE.

- The computer is a very powerful device that can process information with a very high speed, a
high degree of precision and has the ability to store all this information. The computer can receive
data as input, then perform operations on this data according to a program, and finally provide
results as output.

The computer is made up of two parts: the hardware part and the software part. The
combination of these two parts forms what is called: computer system.

v HARDWARE: is the physical or hardware part of the computer (keyboard, screen,
processor, memory, motherboard, etc.).

v" SOFTWARE: is the program part in a computer (operating system, application program,
etc.).

v Operating System: It is a set of programs for computer management (memory
management, file management, etc). It acts as an intermediary between the user and the
machine.

4.1 Types of computers

v Computers or PC: desktop or laptop

» composed of a central unit a case containing the motherboard, processor, RAM,
power supply, and storage units.

» A console: a screen (output), a keyboard and a mouse (input).
» Various peripherals: a printer, a scanner, etc..

v" Workstations:
» Particularly powerful and expensive PCs,
» used only for professional purposes.

v" Mainframes:

» A cabinet houses the CPU and power supply, one or more storage devices (hard
drive, backup) while Hardware & Network Equipment (router, hubs, modem) are in
the same room (separate racks).

» An administration console (screen, keyboard, etc..) is located in this same room.

Algorithms and Data Structure 1 Chapter 1: Introduction

v Servers:
» universal storage location for users connected to servers,
» perform tasks serve as a firewall, host a web server, etc...
4.2 Hardware part (Computer Components)
It is the physical and tangible part of the computer system. It is divided into central unit and
peripheral devices.
4.2.1. Central unit (UC)

It is the central functional element of any computer and is where most of the information

processing takes place. It contains mainly:

v Motherboard : On the motherboard we find all the electronics of the computer, as main
components we find the microprocessor (CPU) and the internal memory.
v Memory: there are mainly 3 types of RAM, ROM and storage media.

» RAM (Random Access Memory): It required for the execution of any program.
Sometimes it's called PC memory or just memory. In essence, RAM is your computer
or laptop's short-term memory. It's where the data is stored that your computer processor
needs to run your applications and open your files. This memory is called RAM because
its content is always changing, it is purely volatile, which means it will not retain data
if there is no power. It is therefore important to save data to the storage device before
the system is turned off.

ROM (Read Only Memory) is the memory that contains a program necessary for
starting the computer (BIOS), it is called read-only memory since its contents never

change by a simple user (neither modify, nor delete, nor add).

Since RAM cannot save user information (volatile memory), as well as ROM (read only
memory), then where can one save for example a whole day's work from? this is where the so-
called storage media (or external memories, auxiliary memories, mass memories) come into play.

» Storage media: used to save information. Examples: hard disk, floppy disk drive,
removable disk drive (Zip or other), CD-ROM drive or burned DVD, USB key, external
hard drive, etc.

v" UCT or CPU (Central Processing Unit) or Processor: It is the brain of the computer, i.e.

it is responsible for any operation carried out inside the computer (e.g. printing a page,

Algorithms and Data Structure 1 Chapter 1: Introduction

drawing a table, listening to a song, making a calculation, send an email, etc.).
Conventionally, the processor is composed of:

» Command and control unit (UCC): its role is to control the operation of the
computer. It is a component of a computer's central processing unit (CPU) that
directs the operation of the processor.

» Arithmetic and Logical Unit (UAL): its role is to perform arithmetic and logical
operations (greater, lower, equal, intersection (AND), union (OR), etc.);

4.2.2. Peripherals

There are two types:

v Input devices: The devices which are used to give input from the external world to the
computer system are known as input devices. The most widely used and popular input
devices in the world of computers are keyboard, mouse, scanner, microphone, barcode
reader, optical and Web camera.

v Qutput devices: The devices which are used to give output from the computer system to
the external world is known as output devices. The most widely used and popular output

devices in the world of computers are monitor (screen), printer, and the audio speakers,

AL AR Dota / instruction = eeede
\ Commands { Cantral Slgals ——te

-

efc.

4

Input Davices I o i Main Memory eeeeeeeop| Output Devices
IPE—

-

s
| Register

Y
3 !

Arithmetic & Logical Unit
{aLu)

| Control Unit (CU) |
0

. Central Procassing Unit {CPU) ./

Basic Architecture of a computer

Algorithms and Data Structure 1 Chapter 1: Introduction

4.3 Software part

4.3.1 Definitions

- A Software refers to the intangible part of Computer Science, the organization and processing of
information: programs.

- A Software is a set of programs that allows a computer or computer system to perform a particular
task or function.

- Software is a set of instructions, data or programs used to operate computers and execute specific

tasks. It is the opposite of hardware, which describes the physical aspects of a computer.

4.3.2 Software Categories

Software Categories

According to According to
use the license

System .
CoMaaTa - Paid (Owners).
Application " ||
Software \ SEse

— Open source

Software Categories

a) Softwares according to use
v System Software:
» Operating systems: MS Windows, Linux Ubuntu, Androis i0S, Mac OS...
» Device drivers: Motherboard drivers, graphics card drivers, etc...
» Firmware: BIOS, UEFI, Embedded systems, ...
» Programming language tools: Interpreter compiler and assemblers,
» Utilities: Anti-virus (Avast, McAfee), CCleaner WinRAR, ...
v Application Software:
» Content Management: MS Word, Google Docs, ...

» Database Management: MS Access, MySQL, Oracle, ...
» Multimedia: Adobe Photoshop, VLC Media Player, Inkscape, ...

10

Algorithms and Data Structure 1 Chapter 1: Introduction

» Web browser: Google Chrome, Mozilla Firefox, ...
» Accounting and Management: SAP, Ciel, ...

b) Softwares according to the license
» Paid software: MS Office, SAP, Sky, ...
» Freeware: Adobe Reader, Skype, TeamViewer, ...
» Shareware: Adobe Acrobat, Winzip, etc...

» Free Software (Open Source): Moodle, Mozilla Firefox, Apache Web Server, ...
So, the two main categories of software are application software and system software.

- An application is software that fulfills a specific need or performs tasks. System software is

designed to run a computer's hardware and provides a platform for applications to be run on top
of. Other types of software include programming software, which provides the programming
tools software developers need; middleware, which sits between system software and applications;

and driver software, which operates computer devices and peripherals.

- Computer program, detailed plan or procedure for solving a problem with a computer; more
specifically, an unambiguous, ordered sequence of computational instructions necessary to achieve
such a solution.

Software is generally a set of programs designed to perform a complex task or process
automatically.

A machine can host any number of software packages. However, an operating system is the basic
software that must be installed for the first time. An operating system was a set of programmes that
ensured the operation of all the hardware components of a computer and man-machine
communication. Exp: MS-DOS (Microsoft Disk Operating System), Windows 95, Windows 98,
2000, XP, vista, Unix and Linux. Once man can communicate with computer, what can he do with
this machine? = It is the application software that tells him what he wants to do.

Example of computer applications :

= MS Word.............word processing

* MS Excel......c....... financial and graphical analysis.

» MS Power Point.......... computer-assisted presentation.
= Real one Player........... to play music

* (D playback

11

Algorithms and Data Structure 1 Chapter 1: Introduction

» Chat, e-mail, Messenger,

* Programming: the subject of this course.
In short, we can say:
Programming is all the activities involved in designing, producing, testing and maintaining
programs.
- A program is a sequence of instructions or operations designed to solve a given problem, to
relieve human effort, to save time and more particularly to avoid errors.
- To program, we first need to know and master what is known as an algorithm. Algorithms are
the basis of programming, which will follow you throughout your studies.
If we want to give the definition of an algorithm, we say that it is similar to that of a program? so
what's the difference?
- An algorithm is a sequence of finite, ordered instructions or operations for solving a given
problem, written in the user's language (a language that is not understood by the computer),
whereas a program is written in a language that is understood by the computer; this language is
called the programming language.
We can say that a program is an algorithm translated into a programming language.

We will look all these concepts in more detail in the chapters that follow.
5. Data units of measurement

A measure of the amount of information or storage capacity.

v" bit (binary digit) : It is the minimum unit of information and is equivalent to a binary digit that can
be Oor 1.
v Byte (octet): It is an 8 bit set. It can contain one character and can take values between 0 and 255.
Bit
(8] i o 1 (8] (8] a: (8]

Byte

| 8 bits = 1 Byte |

v" Word: A word can have a variable number of bits depending on the computer system we are dealing

with. In current computers it varies from 16 bits to 128 bits.

12

Algorithms and Data Structure 1 Chapter 1: Introduction

Unit Shortened Capacity (Value) Conversion
Bit b 1 or 0 (on or off)
Byte/Octet B/octet 8 bits 1 Byte= 1 octet =8bits
Kilobyte KB (Ko) 1024 bytes 1 Ko=2'" Octets
Megabyte MB(Mo) 1024 kilobytes 1 Mo=2?" Octets
Gigabyte GB(Go) 1024 megabytes 1 Go=2% Octets
Terabyte TB(To) 1024 gigabytes | To=2" Octets
Petabyte PB(Po) 1024 terabytes 1 Po=2*" Octets
Exabyte EB(Eo) 1024 petabytes 1 Eo=2% Octets
Zettabyte ZB(Z0) 1024 exabytes 1 Zo=2"° Octets
Yottabyte YB (Yo) 1024 zettabytes 1 Yo=2% Octets

Units of Measure && Conversion table for Digital Information

6. Introduction to Algorithmic

6.1 Solving a Problem by Computer

6.1.1 Problem Definition:

Definition 1: A problem is a theoretical or practical question that involves difficulties to be
solved or whose solution remains uncertain.

Definition 2: Question to be solved by rational or scientific methods.

Definition 3: An issue that can be resolved from the elements given in the statement.

6.1.2 Steps for solving a problem by a computer
To solve a problem with a computer, you:

v Analyzes the problem: by defining the data (inputs) and the results (outputs) of the
problem and determining the procedure to follow (steps of resolution) which allows to
obtain a solution to the problem.

v Formulates the algorithm: this step is used to represent the resolution steps in the
algorithmic language (pseudo-code).

v Translates the algorithm into a program: the algorithm must translate into a program
written in a programming language.

v Runs the program: on the machine to obtain a solution.

13

Algorithms and Data Structure 1 Chapter 1: Introduction

(Lexl)

Problem I

problem analysis

v

= Data
= Results
e Resolution steps

TFormulation of an algonthno
-

Algorithm

Programming language translation
w

Prograim

Lxccution

w

Solution

Steps for solving a problem by a computer
6.1.3. Algorithm representation
Historically, there have been two ways of representing an algorithm:
v Flowchart: graphical representation using symbols (squares, diamonds, etc.)
» Provides an overview of the algorithm.
» Virtually abandoned today
v" Pseudo-code: textual representation with a series of conventions resembling a
programming language (this is an informal language close to natural language and
independent of any programming language).
» It is more practical for writing algorithms.
» Its representation is widely used.
6.2 Algorithm and algorithmic concept
The word algorithm comes from the name of the famous Arab mathematician: Mohamed Ibn
Moussa El Khawarizmi (780-850). A computer programme enables the computer to solve a
problem, but before we can tell the computer how to solve the problem, we must first be able to
solve it ourselves in the form of an algorithm.

v" Algorithmics: It refers to the discipline that studies algorithms and their applications in

computer science.

14

Algorithms and Data Structure 1 Chapter 1: Introduction

v An algorithm: is a sequence of ordered and finished instructions (operations, actions or

treatments) to solve a given problem.

The problem solving steps (Algorithm) are :
- Understand the problem statement.
- Break the problem down into simpler sub-problems.
- Associate a specification with each sub-problem: (The data required and the resulting data).
- The process to be followed to arrive at the result, starting from a set of data.

- Designing an algorithm.

(Problem

G-

v

;
Algorithm m

Problem solving steps.
6.3 Program and programming

v' A program: is a series of ordered and finished instructions that are executed to achieve a
given objective (problem solving). The programme will simply be the translation of the
algorithm into a programming language, i.e. a language that is simpler than French in its
syntax, without ambiguities, that the machine can use and transform to execute the actions
it can describe. Pascal, C, Java and Visual Basic are all names of programming languages.

v A computer program: is a sequence of ordered and finite instructions that are executed by
a computer in order to solve a given problem.

v Programming: refers to all activities that enable the writing, testing and maintenance of
computer programs.

Note: A program is an algorithm written in a programming language.

6.4 Algorithm and program
- The development of an algorithm precedes the programming stage.
- A program is an algorithm.

- A programming language is a language understood by the computer.

15

Algorithms and Data Structure 1 Chapter 1: Introduction

- Developing an algorithm is a demanding problem-solving process.
- Writing an algorithm is an exercise in thinking on paper.
- The algorithm is independent of the programming language. For example, the same
algorithm will be used for an implementation in Java, C++ or Visual Basic.
- The algorithm is the crude resolution of a computer problem.
6.5. Creating a program
Solving a given problem involves a succession of stages, as follows:

Problem > Explicit statement - Algorithm = Program

When writing a program, two types of error can occur:
v" Syntactic errors: these are noticed at compile time and are the result of poor writing in
the programming language.
v Semantic errors: these are noticed at runtime and are the result of poor analysis. These
errors are much more serious because they can be triggered while the program is running.
6.6 Programming languages (computer languages)

A programming language is a communication code, enabling a human being to dialogue with a
machine by submitting instructions and analyzing the material data supplied by the system. The
programming language is the intermediary between the programmer and the machine, Computers
“think™ in binary — strings of 1s and 0s. Programming languages allow us to translate the 1s and
0Os into something that humans can understand and write. A programming language is made up of
a series of symbols that serves as a bridge that allow humans to translate our thoughts into

instructions computers can understand.

16

Algorithms and Data Structure 1 Chapter 1: Introduction

000100101011000101001
100101001001001010010
010101001001001001001
000001110001001001000
100100100111110001010
101010010101000100101

010100010101110010010
010100100010001000100

Programming languages fall into two different classifications — low-level and high-level.
Low-level programming languages are closer to machine code, or binary. Therefore, they’re harder
for humans to read.

High-level programming languages are closer to how humans communicate. High-level languages
use words (like object, order, run, class, request, etc.) that are closer to the words we use in our

everyday lives. This means they’re easier to program in than low-level programming languages.

Two types of High-level programming languages are distinguished:

v" Procedural languages: Fortran, Cobol, Pascal, C, ...

v Object-oriented languages: C++, Java, C#,...
Choosing a programming language isn't easy: each one has its own specificities and is better suited
to certain types of use. The most popular programming languages include the following: Python,
Java, JavaScript, C#, C++, PHP, R, Swift, Kotlin.
7. Basics of an algorithmic language
7.1 Basic structure

In pseudo-code, the general structure of an algorithm is as follows:

17

Algorithms and Data Structure 1 Chapter 1: Introduction

Algorithm name_of the algorithm

CONST { Defining constants }

TYPE { Defining types} = they are optional (if there is no var or const or type,
= they are not written)

VAR { Declaring variables}

BEGIN

{ Sequence of instructions }

e Header part: this is the first line of the algorithm, starting with the word algorithm
followed by a space followed by the name of the algorithm.
¢ Declarations section: in this section, all the objects used to solve the problem must be
declared.
e Processing section: this section begins with the word Begin and ends with the word End.
It contains the actions used to solve the problem.
7.2 Basic instructions
An algorithm is made up of four types of instruction considered as small basic blocks:
1. Variable assignment
2. Reading and/or writing
3. Testing
4. Loops
Before describing these instructions, we will first introduce the notion of variable and constant.
7.3 Constants and variables
Objects are divided into two classes: constants and variables.
7.3.1 Notion of variable
The data manipulated in an algorithm are called variables. In a programming language, a variable
1s used to store the value of a datum. It designates a memory location whose contents can change
during the course of a program (hence the name variable).
Each memory location has a number that allows it to be referred to uniquely: this is the memory

address of that cell.

18

Algorithms and Data Structure 1 Chapter 1: Introduction

Rule: The variable must be declared before being used, and must be characterized by:

e A Name (Identifier)

e A type that indicates the set of values that the variable can take (integer, real, Boolean,

character, string, etc.)

e A value.
Identifiers : rules
The choice of name for a variable is subject to a few rules which vary according to the language,
but in general:
- A name must begin with an alphabetical letter. Example: E1 (1E is not valid)
- Must consist solely of letters, numbers and underscores (" ") (avoid punctuation characters and
spaces). Examples: SMI2008, SMI_2008. (SMP 2008, SMP-2008, SMP;2008: are invalid).
- Must be different from the language's reserved words (for example in C: int, float, double,
switch, case, for, main, return, ...).
- The length of the name must be less than the maximum size specified by the language used (in
C, the name must be no longer than 32 characters).
- The C language is case-sensitive: a and A are two different names.
Tip: to make the code easier to read, choose meaningful names that describe the data being
manipulated. Examples: Student _Mark, Price TTC, Price HT
Variable types
The type of a variable determines the set of values it can take. The types offered by most languages
are :

e Numeric type (integer or real).

e Byte (encoded in I byte): from [-27,27[or [0, 28].

e Short integer (coded on 2 bytes): [-215,215]

e Long integer (coded on 4 bytes): [-231,231[

e Single-precision real (coded on 4 bytes): precision of order 107

e Double precision real (coded on 8 bytes): precision of order 107

e Logical or Boolean type: two values TRUE or FALSE

e Character type: upper case letters, lower case letters, digits, symbols, Examples: 'A", 'b',

nrwy
B Wi

19

Algorithms and Data Structure 1 Chapter 1: Introduction

e String type: any sequence of characters. Examples: " " Last name, First name", "postal code:
1000", ...
A) Integers: To represent integers, the operations that can be used on integers are :
e All basic operations are permitted: +, -, * , /
e The classic comparison operators: <, >, =, ...
e Division/ is Euclidean (or integer) division. Ex: 11 /4 =2 and not 2.75!)
e The modulo % operator gives the remainder of the Euclidean division. Ex: 11%4 =3
B) Real: To represent real numbers, the operations that can be used on real numbers are :
e The classic arithmetic operations: + (addition), - (subtraction), * (product), / (division).
e Standard comparison operators: <, >, =, ...
e Division / gives a decimal result.
¢ The modulo % operator does not exist.
C) Boolean: A logical variable (Boolean) can take two values: TRUE or FALSE. The main
operations used are :
e Logical operators: NOT, AND, OR
Truth table :

A B |AAB| AVB A NON A
FALSE | FALSE | FALSE | FALSE FALSE | TRUE
FALSE | VRAI | FALSE | TRUE

TRUE | FALSE
TRUE | FALSE | FALSE | TRUE

TRUE | TRUE TRUE TRUE

Comparison operators: =, <, >+

D) Character

This is the domain made up of alphabetic and numeric characters. A variable of this type can only
contain a single character. The basic operations that can be performed are comparisons: <, >, =, ...
E) String

A string is an object that can contain several characters in an ordered way.

Variable declaration

20

Algorithms and Data Structure 1 Chapter 1: Introduction

Remember: any variable used in a program must have been declared first. In pseudo-code,
variables are declared using the following form :
Variable list of identifiers : type
Example:
Variable
1, j, k : integer
X,y :real
OK : boolean
Chl, ch2 : string

In C: basic types :
o char (characters) For example: 'a'...'z', 'A"...'Z",...
o int (integers) For example: 129, -45, 0, ...
o float (real numbers) For example: 3.14, -0.005, 67.0, ...
In general, their declaration is as follows:
<type><name>;
<type><namel><name2><name3>;
Examples :
int a;
float value, res;
chara,b,c;

Declaring a variable means reserving a memory location for it. We don't know its initial value!

7.3.2 Notion of constant

A constant is a variable whose value does not change during program execution. It can be a
number, a character or a string of characters. In pseudo-code,

Constant identifier = value (by convention, constant names are in uppercase)
Example: to calculate the area of circles, the value of pi is a constant but the radius is a variable.

e (Constant PI=3.14, MAXI=32
e A constant must always be given a value as soon as it is declared.

21

Algorithms and Data Structure 1 Chapter 1: Introduction

InC:
1. Literal constants: Exp. Int a=10; float tax_rate = 0.28;
2. Symbolic constants
2.1, #define Pl 3.14159 (#define can be found anywhere in the source code, but its effect is limited
to the part of code that follows it. Generally, programmers group all #define together at the
beginning of the file, before the main() function).
2.2. const float pi = 3.14159;

7.4 Basic operations
In what follows, we describe the list of basic operations that can make up an algorithm. They are
described in pseudocode (pseudo language).
7.4.1 Assignment
Assignment consists of assigning a value to a variable (i.e. filling or modifying the contents of a
memory area). In pseudo-code, assignment is denoted by the sign «—
e Var« e: assigns the value of e to the variable Var
e ¢ can be a value, another variable or an expression
e Var and e must be of the same type or of compatible types
Assignment only modifies what is to the left of the arrow.
Example1:i+«1,j i,k «itj,x«10.3, OK «FAUX, chl «"SMI", ch2 «—chl ,x «4 ,x
«j (avec 1, j, k : entier; x :real; ok :boolean; chl,ch2 : string)
Invalid examples: 1 <10.3 , OK «"SMI" , j «x
Example 2
a <10 a receives the constant 10
a < (a*b)+c a receives the result of (a*b)+c
d «'m' d receives the letter m
Remarks
e The C programming language uses the equal sign = for the assignment «—
e When an assignment is made, the expression on the right is evaluated and the value found
is assigned to the variable on the left. Thus, A«B is different from B«—A

e Assignment is different from a mathematical equation.

22

Algorithms and Data Structure 1 Chapter 1: Introduction

e The operations X «— x+1 and x «<— x-1 have meaning in programming and are called
incrementing and decrementing respectively.

e A+1 « 3 isnot possible in programming languages and is not equivalent to A « 2.

¢ Some languages give default values to declared variables. To avoid any problems it is

preferable to initialise declared variables.

Examplein C
int n;
int p;
n =10;
p=2%n-3;
Some useful operators
- i ++ : operator used to add a unit to the variable i (of type int or char)
-i--:same as above, but to remove a unit
e -x* =y, x/ =y, x- =y, x+ = y: operators for multiplying (dividing, subtracting or adding) x by y

(no restriction on type)

7.4.2. Reading

read (variable)

This operation assigns to a variable a value entered using an input device (usually the keyboard).
Examples of reading

read (a) The user is asked to enter a value for a

read (a,b,c) The user is asked to enter 3 values for a, b and ¢ respectively

InC:
Input with scanf.
- Reads from the standard input (the keyboard)

- scanf('"<code format>"', &<variable>); with <code format> = %d, %f or %c to read an integer, float or
character.
Examples

e intn;scanf(” %d“, &n);

o float x ; scanf(%f “, &x);

¢ chara;scanf((“ %c ', &a);

Note: The program stops when it encounters a Read instruction and does not continue until the
input expected by the keyboard has been entered and the Enter key pressed (this key signals the

end of the input).

23

Algorithms and Data Structure 1 Chapter 1: Introduction

Tip: Before reading a variable, it is strongly recommended that you write messages on the screen
to warn the user what to type.
7.4.3 writing
Write (expression)
It communicates a given value or the result of an expression to the output device.
writing examples
write('hello’) Displays the message hello (constant)
write(12) Displays the value 12
write(a,b,c) Displays the values of a, b and ¢
write(a+b) Displays the value of a+b
write(a, b+2, "Message") Displays the value of a, then the value of the expression b+2 and finally

the word "message".

Examplesin C

¢ printf(“ hello /n “);

s int x=10; printf(“value of x = %d/n *“, x);

s intx=10; float y = 3.4; printf(* ‘value of x = %d et de y+x =%f/n *“, x, y+x);
Main format codes

e %d for the type int

e % for the type char

¢ %fforthe type float

Formatting characters
e /n:line feed
& /r:return to start of current line
e [t:tab

24

Algorithms and Data Structure 1 Chapter 1: Introduction

7.5 General syntax of the algorithm

Notes:

Example algorithm

Constant varl =20, var?2 = "hello! "
Variable

var3, vard : real

vars: characteﬂ

Begin // body of the algorithm
Instruction 1

Instruction 2

Instruction n

End

The instructions in an algorithm are usually executed one after the other, in sequence (top
to bottom and left to right).
The order of execution is important

This sequence cannot be changed arbitrarily

7.6 Expressions and operators

An expression can be a value, a variable or an operation made up of variables linked by

operators.

Examples: 1, b, a*2, a+ 3*b-c, ...

Evaluating the expression provides a single value, which is the result of the operation.

The operators depend on the type of operation:

Note:

Arithmetic operators: +, -, *, /, % (modulo),”(power)

Logical operators: NOT(!), OR(| |), AND (&&)

Relational operators: =, <, >, <=, >=

String operators: & (concatenation)

An expression is evaluated from left to right, taking into account the priorities of the

operators.

An integer and a character cannot be added together.
However, in some languages, an operator can be used with two operands of different

types, as is the case with arithmetic types (4 + 5.5).

25

Algorithms and Data Structure 1 Chapter 1: Introduction

v" The meaning of an operator can change depending on the type of operands, for example:
v" The + operator with integers performs addition, 3+6 is 9
v" With character strings, it performs concatenation: "hello" + "everyone" is "hello
everyone".
7.7 Operator priority
For the arithmetic operators given above, the order of priority is as follows (from highest to
lowest priority) :
e () : parentheses
e " (raising to a power)
e ¥ /:(multiplication, division)
e % :(modulo)
e + -:(addition, subtraction)
Example: 9 +3 * 4 is 21
e Where necessary, brackets are used to indicate the operations to be performed first.
Example: (9 + 3) * 4 is 48
e With equal priority, the expression is evaluated from left to right
7.8 Boolean operators
e Associativity of the operators and and or: a and (b and c¢) = (a and b) and ¢
e Commutativity of the operators and and or:aandb=banda;aorb=bora
e Distributivity of the operators and and or: a or (b and ¢) = (a or b) and (a or ¢); a and (b or
c)=(aandb) or (a and c).
¢ Involution (reciprocal homography): non non a = a; Morgan's Law: non (a or b) = non a
and non b; non (a and b) = non a or non b.
Example : let a, b, c and d be any four integers:

(a<b)||((a>=b)&&(c==d)) = (a<b)||(c==d)car (a<b)||(!(a<b)) always true.

26

Algorithms and Data Structure 1 Chapter 2: Simple Sequential Algorithm

Chapter 2: Simple Sequential Algorithm

1. Introduction

When the computer was invented in the 1940s, it operated using electronic tubes, and its
programming (writing commands) was done by entering a series of numbers composed
of zero (0) and one (1). It was difficult for programmers. However, with the creation of
the transistor, computers became much smaller, and their capabilities increased. Easier-
to-use programming languages were invented, which are very similar to human
language. These languages are called high-level languages. Any program written in these
languages can be quickly and automatically translated into machine language (0s and 1s)
using a compiler.

In this chapter, we will cover the concept of language, algorithm structure, the concept of
variables and constants, and also explore some types of simple instructions such as

assignment, input, and output.

2. Notion of Language and Algorithmic Language

2.1. Language
Language is a means of communication and understanding among human beings. In the
case of a computer, it is the way a computer understands human commands. Language
consists of an alphabet, symbols, vocabulary, grammatical rules, and meanings.
e Alphabet: It is a set of letters, numbers, and symbols.
e Vocabulary: A collection of symbols and words, whether reserved words or those
defined by the programmer.
e Syntax: Rules or laws that govern the grouping and placement of symbols and
vocabulary.
¢ Semantics: Specifies the meaning of each instruction that can be constructed in
the language, particularly what it will produce during execution.
2.2. Programming Language
A programming language provides us with a framework to develop algorithms and
produce programs that a computer can execute. It allows us to describe the data
structures that will be processed by the computer and the operations that will be
performed. It serves as an intermediate language between human language and machine

language. Humans can understand it, and computers can translate it into the Os and 1s of

27

Algorithms and Data Structure 1 Chapter 2: Simple Sequential Algorithm

machine language that they understand.

There are many programming languages, each with its own advantages and rules,

making them suitable to varying degrees for specific types of software. Programmers

must know some of these languages and know which language is appropriate for each

type of application.

221,

Types of Programming Languages

Programming languages can be divided into two parts:

Interpreted: Interpreted: If the program is not fully translated into machine
language, but rather translated and executed instruction by instruction. Examples:
Matlab and web languages.

Compiled: If the program is fully translated into machine language before execution.

Example: C.

Examples of Programming Languages:

[]

2.2.2,

C and C++: which will be used in this course and are considered the parent language
of many others.

Pascal: used for educational purposes and closely related to algorithms.

Delphi and WinDev: good for developing management software.

Java: suitable for network and mobile applications.

C#(C-Sharp) and Visual Basic: useful for developing software specific to the
Windows environment.

Objective C (Xcode): used for software development for Apple products (Mac,
1Pad, and 1Phone).

PHP: specific to web development.

Matlab and Python: specific to data analysis and used by engineers.

Compiler

A computer program that converts the source code written in a particular programming

language in to targeted code that can be executed directly by a computer. There are many

programming languages that a programmer cannot know all of them. To enable

programmers to work in teams and exchange solutions, they need to formulate these

solutions in algorithmic language. Algorithmic language is the common language of all

programmers.

2.2.3. Integrated Development Environment (IDE)

To write a program, you can use any text editor such as Notepad. However, this method

28

Algorithms and Data Structure 1 Chapter 2: Simple Sequential Algorithm

makes the development process very difficult. Therefore, there is a set of programs that
provide all the necessary tools for the development process called IDE (Integrated
Development Environment). IDE provides all the necessary tools for designing,
developing, testing, debugging, and deploying applications, which makes development
easier and faster. The IDE includes all the necessary tools to start designing applications,

such as:

Code editor: for writing and editing program code. It performs automatic
formatting, making the process of reading easier.

— Project manager: to manage the files that make up a single project.

— Debugger: detects and corrects errors in the code.

— Shortcuts to compile and run the program.

- Other tools...

Examples of IDEs:Dev-C++ Embarcadero,Visual Studio...

2.3. Basic Syntactic Elements
2.3.1. Reserved Words
Reserved words are words that have preexisting meaning in the programming language and
cannot be used by the programmer to create new elements. Each language has its own
reserved words, such as "algorithm" "begin," and "end" in the algorithm, and "if" and
"while" in C.
2.3.2. Values
Values can be numbers, characters (always enclosed in single quotes "), strings of
characters (always enclosed in double quotes ""), true, or false. See types.
example: -2,7,3.12,6e-7,'k','z",'1",'I", "azerty","»3" true, false
2.3.3. Identifier
An identifier is the name given by the programmer to any element of the algorithm that
they want to create. Examples include the name of the algorithm, variable name, type
name, constant name, function name, etc. There are rules and conditions in the C language
that we adopt in the algorithm for naming identifiers:

Rules for Naming Identifiers:

e The identifier name can only contain literal symbols and numerals from A to Z, a to z,

and 0 to 9, as well as the underscore symbol " ".

nn
*

e [t must be a single word, meaning the name cannot contain spaces

mnn

e It must start with a letter or " ", not with a digit.

29

Algorithms and Data Structure 1

Chapter 2: Simple Sequential Algorithm

e It must not be a reserved word.

e The identifier must be unique; it is not possible to define more than one element with

the same name.

e It is recommended to use meaningful names, for example, we use "Width" instead of

"

x"

Examples of Valid Identifiers:

X, pi, Mat_info, isEmpty, n5, if, 0Oa (it's better to avoid it)

Examples of Invalid Identifiers:

oz , m, ¢, éléve (unacceptable symbols)

3a (starts with a digit)

Mat info (contains a space) begin, end, if (reserved words)

2.3.4. Operations

e Arithmetic Operations:

Operation | C comment example
-+ -+ Sign +3 -7 -a
-+ -+ | The two operands are integers, the result is an integer. | 5+3.0 real
one is real, result is a real number.
* For the product, like addition and subtraction. 5*3 integer
/ / for real division. The result is always a real number 5/30r5.0/3mnC
mod % To calculate the remainder of the division. Both Smod3 or 5%3 in C
operands are integers The result is always an integer.
div / To calculate the quotient (integer division). Like the 5div3 or5/3inC
remainder
& to calculate the power of a number. In C, the function 5"2orpow(5,2)inC
pow() is used, the result is a real number
N to calculate the square root of a number. In C, the \5or sqrt(5) in C
function sqrt() is used.
¢ Relational Operators:
Algo C comment
B e L The same in C
= == In C « == » twice = is read as equal, while « = » is used for
assignment and read receives.

30

Algorithms and Data Structure 1 Chapter 2: Simple Sequential Algorithm

+ = Not equal

The result of the comparison is always a logical Boolean, i.e., true or false.

¢ Logical Operators:

Operation C observation

not negation ! true if the operand is false, and false if it's true.

and && | true only if both operands are true, otherwise, it returns false

or [true if at least one of the operands is true, otherwise, false.

XOr exclusive true if one is true and the other is false, otherwise, it returns false.
OR

= equivalence == true if both operands are equal..

e String Operators:
+: used to concatenate two strings. For example, "hello" + "world" gives "helloworld"
without adding spaces. "hello" + " " + "world" gives "hello world".

¢ Operator Priority:
When evaluating an expression, we follow the priority summarized in the following table.

If the priorities are equal, priority is given to the operation on the left.

priority | the operation

0 0

1 + and - sign,not.
2 * / mod div

3 -+

4 >, =, L <=

5 #,=

6 and

7 or

Parentheses are used to change priority (and sometimes for readability).

2.3.5. Expression

An expression is a structure of values and identifiers, connected by operations. When
evaluated, it results in a single value. Expressions are created using values, variables,
parentheses, and operations.

Example:

Assuming a=2, b=3, and ok=true,

31

Algorithms and Data Structure 1 Chapter 2: Simple Sequential Algorithm

expression | result expression result expression result
5 3 at3 5 ok True
a 2 "In"+"fo" | Info a* (b-7)>8et ok False

2.3.6. Instruction
An instruction (statement) is a command or step in the solution, meaning it is the action that

will be executed.

2.3.7. Block of Instructions

A block of instructions is a set of instructions that begins with the word "Begin" and ends
with "End," or begins with a reserved word defining the beginning, such as "if," and ends with
"End" + the corresponding starting word, e.g., "End If." In C, it starts with "{" and ends with
mn

Example:
algorithm C
Begin {
Instruction 1; Instructionl;
Instruction n; Instructionn;
Fnd }

2.3.8. Comments

Comments are texts that are ignored during the translation of the program and are not part of
the algorithm. They are added to programs to provide explanations and facilitate
understanding.

In C, comments can be added using «//» for single-line comments. It begins with // and ends
with a line break.

Comments can also be added, starting with « /* » and ending with « */ », which can extend
over several lines.

example:

//One-line commentary
/* Comment

It can span multiple lines*/

2.3 Expressing the Algorithm

An algorithm can be expressed by writing it in natural language, such as Arabic, French, or
English. However, natural language is ambiguous and imprecise. Therefore, we write the
algorithm using Pseudocode, flowcharts, or programming languages.

1- Pseudocode: Describes the algorithm in human languages like Arabic, French, or

32

Algorithms and Data Structure 1 Chapter 2: Simple Sequential Algorithm

English, in a manner similar to programming languages. Some use many details (to be
closer to programming languages), while others use fewer details (closer to human
language). There is no specific rule for writing this type of code.

2- Flowchart: An illustrated representation of the algorithm that shows the steps to
solve the problem from start to finish while abstracting away the details to
provide an overview of the solution. Arrows and agreed-upon geometric shapes
are used to represent the steps.

3- Code: Where the algorithm is written in a programming language directly, such
as C, so that the computer can translate it into binary language for direct

execution by the processor.

3. Parts of an Algorithm

An algorithm consists of two main parts: data and instructions. An algorithm's structure is very
similar to a recipe for cooking. It typically consists of a title, followed by ingredients, and
finally, the preparation method.

An algorithm takes the following form:
Algorithm name;

Declaration of the data needed;
Begin

Instructions;

End.
The algorithm is composed of three basic parts:
e Header: Comprised of the word "Algorithm," followed by the name that explains the
problem to be solved. The name should be a valid identifier.
¢ Declarations: Reserved for reserving memory space for data (constants and variables)
that will be used as input and output.
¢ Instructions: A set of steps or commands that will be executed during the algorithm's
execution. It starts with "Begin" and ends with "End." There are five main types of
instructions:
1. Assignment instruction.
Read (input) instruction.
Write (output) instruction.

Conditional instruction.

A A

Iterative (loop) instruction.

33

Algorithms and Data Structure 1 Chapter 2: Simple Sequential Algorithm

4. Data: Variables and Constants

4.1 Constant

A constant is a value (numeric or symbolic) that has a name and cannot be changed during
program execution.

Constant declaration:
Const Identifier=value

Const or Constant: These are two reserved words that allow constant declaration.
Identifier: The name given to the constant.
Value: The value assigned to the constant.

Example:
Const

Pl= 3.141592¢6
DEP = "_¥I ade¥! pui"
Advantages of Constants :
— Condenses the code, where a long phrase can be replaced with a short word, such as using
"PI" instead of 3.1415926.
— Helps avoid errors by providing a meaningful name. For example, "PI" instead of
3.1415926.
— Simplifies code maintenance, as the value needs to be changed in one place only.
4.2 Variable
A variable is a location in memory used to store data. It has a name, a type, and a value
(address in the second semester).
Name: Identifier used by the programmer to refer to and manipulate the variable. For
example, "weight."
Type: In computers, everything is represented as 0 and 1. The type determines how it is
translated, as well as the size of memory to reserve. For example, "int" (32 bits).
Value: The content of the bits that make up the variable, i.e., its value. Typically, this is the
part that changes during program execution. For example,1101represents the number 13, or -5
if we consider the leftmost 1 as the sign "-".

Variable Declaration:

Var Identifier: Type;
Var or Variable: These are two reserved words that allow variable declaration.

Identifier: The name given to the variable.

34

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

Type: The type of the variable.

"non

A comma "," can be used to declare multiple variables of the same type.

Examples:

Vvar

age: integer

gender: character

Xy

Note: By convention, constant names are written in uppercase, and variable names are

y, z: real

written in lowercase.

5. Data Types

A data type represents the domain to which data belongs, such as numbers, text, images,

audio, or video. The data type determines how the bits, which compose the variable, are

translated and the size of memory to reserve, i.e., the number of bits and allowed

operations. When defining a variable, its type must be specified. There are five basic

data types in the algorithm:

1

2
3.
4

Notes:

Integer such as: -5, 0, 1,13

Real: -7, 0,1, 3.14, 2.7¢03

Boolean Contains only true or false.

Character: Includes all symbols on the keyboard, such as digits, letters in all
languages, and printed (visual) and unprinted symbols. They are always enclosed
in single quotes (e.g., 'a', 'M', " o'))+ ' 1),

String: A set of symbols, with a length of 0 or more, always enclosed in double

quotes (e.g., "computer," "Good luck\n," "1", "3.14").

"o

— We use "." instead of "," to express decimal numbers.

— 1 1s not the same as 1., not the same as 'l', and not the same as "1." The first is an integer,

the second is a real number, the third is a character, and the last is a string.

—'a' 18 not the same as "a" The first is a character, and the second is a string of length 1.

— Lowercase letters are not the same as uppercase letters. For example, 'a' is not the same as

IA'

— Some symbols (keys) do not print. For example, space ' ' or newline "\n'.

— The backslash (\) is used to represent some invisible or special symbols visually. For

example, newline "\n' and tab "t'. To print double quotes, we use ‘\"” and to print a backslash,

35

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

we use \\.

"

— There is an empty string, denoted as "", which contains no characters and has a length of 0.
6. Basic Instructions

6.1 Assignment

This is the process that allows us to store a value in a variable.

Syntax:

Variable « exp ;
e variable: This is the name of a variable.

e exp: It is an expression (identifiers, values, and operations, see 2.3.4), calculated to
obtain a unique value placed in the variable.
« read as "gets" in English. The arrow always points to the variable.
A variable can hold only one value at each point in the program's execution. When the
operation is performed, only the left variable changes. It loses its old value and takes on the
new one. For the assignment process to work correctly, the value of the right expression and

the left variable must be of the same type or at least compatible types.

Example:

a<>5 a gets 5
b¢—a*2 b gets 10

a«0 agets 0
b«b-1 b gets 9
c'b’ C gets the letter b
d¢«b>a D gets true

s<"name" S gets the word "name"

Before a variable can be used, it must be declared and assigned an initial value. To obtain the
value of any variable or constant, simply write its name.

6.2 Input/Output Instructions

To interact with the user, the programmer has two instructions: read () and write ().

6.2.1 Input: Read ()

read () 1s a ready-to-use function in algorithms. You input a value from the user, via the

keyboard, and assign it to the variable inside parentheses. It is always used for data entry.

36

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

Syntax:

Read (variable)

e variable: This is the name of a variable. read () can only be used with variables.
When the program is executed and the input instruction read () is encountered, execution is
paused until the user enters data. The input process ends by pressing the Enter key. The
program will continue to execute. Several variables can be entered at once, separated by a
comma ",". In this case, the user enters the value of the first variable, then presses the space
key, then enters the value of the second variable, and presses the Enter key only after entering

the value of the last variable.

Example:
read (name) The user enters a series of letters, for example, <Muhammad>, then presses the
Enter key.
read(a,b) They enter a number, for example, "15", then press space, then enter the second
number, for example, "20", then press the Enter key.

6.2.2 Output: write()
write () 1s a ready-to-use function in the algorithm. It displays on the screen whatever we put
inside its parentheses. It is always used to print results.
Syntax:
Write (exp);
or
Write ("message");
e exp: This is an expression, calculated to obtain a single value, to display on the

screen.

e '"message": Any text you want to display as is on the screen. It is not calculated.
It can be in any language or set of letters. It must be enclosed in double quotes,
which are not displayed on the screen.

Several values and texts can be displayed at once, separated by a comma ",".

Example:
Write (name); The value of the variable name appears on the
screen, for example, <Mohammed>.
a¢5; Displays 8 without changing the value of a.
Write (a+3);
Write("square of",a,"is",a*a); Displays: square of 5 is 25
Write ("b=",a); Displays: b=5

37

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

Notes:

— Always before the Read() instruction comes the Write() instruction, to explain to the user

what is expected to be entered.

— The user writes on the keyboard, while the program (computer) reads <read()> from the
keyboard, and the program writes <write()> on the screen, while the user reads from the
screen.
— <read()> can be generalized for the input of all input units, and <write()> for the output of
all output units.
7. Building a Simple Algorithm
After seeing that the algorithm consists of 3 parts, namely: header, declaration, and
instructions, and we have learned to declare constants and variables, and we have learned 3
types of instructions, namely: assignment, reading, and writing. Now we can write simple
algorithms.
To know the variables, we ask the question: "What data is needed and what is the expected
result?" The instruction part usually consists of three basic steps:
— The first step, "Inputs": the data needed for implementation is entered using the <read()>
instruction.
— The second step, "Processing": It contains a set of instructions necessary to solve the
problem using the assignment instruction.
— The third step, "Outputs": the results are presented using the <write()> instruction.
Examplel:
Write an algorithm that calculates the area of a circle.
Algorithm circle area;
Const
P=3.14;
Var
r,s:integer;//r is the radius and s is the surface
Begin
write ("Enter the radius"):;
read(r) ;
S«p¥r¥rr;
write ("The area of the circle is:", s);

End.

38

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

Example 2:

Write an algorithm that calculates the average for ADSI.

Algorithmavg ADS1;

Var

exam, td, tp,avg:real;

Begin

write ("Enter the exam score, tutorial score, and practical

score"); Read(exam, td, tp);

avg— (exam*3+td+tp) /5;

write ("The average is:",avg);

End.

7.1 Execution of an Algorithm

The execution of the algorithm aims to know the value of each variable after each
instruction. Where execution starts from the word Begin to the word End. At the
beginning, the values of the variables are undefined (empty), then after each assignment or

reading, the value of the variable changes.

Example
Algorithm mirror;)
Execution
Var
a,b,c: integer; a b o]
Begin
a<357; 357 ? ?
c«0; 357 ? 0
bé¢-a mod 10; 357 7 0
cec*10+b; 357 7 7
a<—a div 10; 35 7 7
bé¢a mod 10; 35 5 7
céc*10+b; 35 5 i
a<—a div 10; i 5 75
b<a mod 10; 3 3 75
c¢ec*10+b; 3 3 250
End.

8. Representing an Algorithm with Flowcharts

A flowchart is a visual representation of an algorithm before its programming. It shows us the

sequence of operations and gives us the overall structure of the algorithm's components.

39

Algorithmsanddatastructures1

Chapter2:Simplesequentialalgorithm

Flowcharts have many advantages: they provide a better visualization of ideas and are easily

understood by everyone, facilitating teamwork.

Several shapes are used in a flowchart, with the most important being:

Symbol

Use

-

Start, end, interruption

Input - Output
read() / write()

Processing Symbols like assignment

no

yes

Logical Symbols: Choices with

conditions

Example:

Algorithm to calculate the area of a circle | the algorithm to check the accuracy of the password

begin

v
[]
B
SEprr

v

/ Write [s) /

l YES

9. Translation into C Language

"C" is a fully compiled high-level imperative language. It is one of the most widely used

programming languages in the world and is considered the parent language of many

40

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

programming languages. In this course, we will use Dev-C++ as an IDE. It's worth noting that
"C" is case-sensitive, distinguishing between uppercase and lowercase letters. <main> is not
the same as <Main>, <MAIN>, or <mAin>. Therefore, we recommend always writing in
lowercase.

All simple statements (declaration, assignment, I/O, return) must end with a semicolon ";".

9.1 The Preprocessor

Before the program is actually compiled, the source code files are processed by a
preprocessor, which resolves certain directives given to it. For example, including other files
(libraries), replacing words with other phrases (macros).

A directive given to a preprocessor always starts with a #.

9.1.1 #include

The #include directive instructs the compiler to include the content of another file into
the current program's code.

#include <filename>

Generally, these files are libraries of predefined and ready-to-use functions. Example:
Example:

e Touse I/O functions (scanf and printf), we use the stdio.h library.

e To use mathematical functions (sin, cos, exp, pow, sqrt, ...), we use the math.h library.
e To use string functions (strlen, ...), we use the string.h library.

#include<stdio.h>

#include<math.h>

9.1.2 Macro

A macro, in its simplest form, is defined as follows:
f##define macro_namereplacement text

Example:
#define N 10

The preprocessor replaces all occurrences of the word N with 10.
9.2 Types
9.2.1 Predefined Types
The following tables summarize the basic types in algorithms and their equivalents in C.

e Integers in algorithms from-oo to +oc:

Types Size(bytes) Size(bits) Range
char 1 8 -27,27-1
short 2 16 -215, 2151
long 4 32 -23,23-

41

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

int 4 32 =231, 231-1

Natural numbers in algorithms from 0 to +oc. Since integers contain natural numbers, we
usually use integers to express them. You can also add unsigned before a type in C to

express only natural numbers.

Types Size(bytes) Size(bits) Range

unsignedchar 1 8 0,281
unsignedshort 2 16 0,216-1
unsignedlong 4 32 D21
unsignedint 4 32 0,23%2-1

e Real numbers:

Types Size(bytes) Precision | Range

float 4 6 3.4x107%%t03.4 x 10*38
double 8 8 L7 %10 3%y 7 x 107308
Long double 10 8 L7 xd0 e 1 e RO

e Boolean type: There is no Boolean type in C, but int is used instead. True is
represented by the number [and false by 0. Any number other than 0 is translated as
true.

e Character type is char.
e String type: To express strings in C, we use arrays (Chapter 5) of char[] or pointers
(second semester) of char*.
9.2.2 Notes
— The int type is the generic type for integers.
— The char type is used for both integers and characters, where each character is associated
with a number.
— In C++, there's the bool type for Boolean and string for string.
— In this course, we use char for characters, int for integers and Boolean, and float for real
numbers.
9.2.3 Type Conversion
e Implicit: This is done automatically by the compiler. It goes from a smaller type to a larger
type without losing information. For example, char to int, int to float, or float to double.
Converting 5 to float becomes 5.0.
* Explicit (casting): When the conversion could lead to losing information, it's necessary to
declare that the programmer is performing the operation. You need to specify the destination

type in parentheses before the expression to convert it. For example, (int) 3.1416 converts it to
3.

42

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

9.2.4 Defining New Types
To create a new type or rename a specific type, the typedef keyword is used:
Typedef old name new name;
Example: To declare a new type named Banane with an underlying type of int, you use:
typedef int Banane;
9.3 Declaration of Variables and Constants
9.3.1 Declaration of Variables
Syntax:
Type variable;
example:

int age;

char gender;
float %, v, z;
Banane b;

9.3.2 Declaration of Constants
Syntax:

const Type Identifier = wvalue;

or

Type const Identifier value;

example:

int const N = 10;

const float Pl = 3.1415926;

const char[] DEP = "_ J¥! pde¥! pad";
Note: Macros can be used to declare constants as well, like:
#define DEP "_I¥! pade¥! puid"

9.4 Assignment

"

We use = instead of «<—, and read "receives" rather than "equals".

Syntax:
variable = expression;
example:
a=5r a get=s 5
b=a*2; b gets 10
a=0; a getse O
b=b-1; b gets 9
o="k"; c gets the lettexr b
d=k>a; d gets 1
s="name"; s gets the word nams

43

Algorithmsanddatastructures1

Chapter2:Simplesequentialalgorithm

Declaration with initialization

float x,

y=3,

Multiple assignments with right priority
b=3;
a=b=5+3;

b takes 8, then a takes the value of b, which is 8

Assignment shortcuts in C.

z;//y is initialized with 3

expression comment example
v+=exp ; & v=v+(exp) ;
x=2
v-=exp ; % v=v- (exp) : .
g & v=v¥ (exp) : x*=5+3 ; © w=x* (343)
v —=ewp ;| e (= 4] - - =
(=2p) 7 | Parentheses are important # x=x*5+3 ;
viZexp ; & v=v/(cxp) ; x becom= 16
vh—exp ; <@ v=v%(exp) ;
If contained in another instruction, the .
T ST : x=2 ;
it s =Rl G calculation is performed with the current ,
. : y=3+xt+ ;& y=3+x jxextl
value of the variable, and after completion, 1 | 1 ctner words, y becemes 5
Y 1s added to or subtracted from the vanable and x 3
R g ¥y¥—v-1_ 3 5 .
depending on the operation.
L 4 3 g 4 ¥=Zz
If included in another mstruction. 1 1s added 2 : -
_ i : \ =3 EEN = x=x+1 ;
Thia = Fruil ¢ or subtracted according to the operation L2
4 r
before the expression 1s calculated. using the In other words, y becomes &
-—v ; = w=v-1 ; | new variable value. and x 32
Note:

e v++is not identical to v+1, but v=v+1.

o v+t ++v, v=v+1, v+=1 are all equivalent if presented in a separate instruction.

e The difference between v++, ++v when it appears in another sentence, is the pre- or

post-addition.

Empty instruction: It's an instruction that does nothing, like the semicolon instruction

mn

change in the program state.

9.5 Input and Output

9.5.1 printf (print formatted)

and instructions such as i + 1, where the result is calculated and ignored, without any

The printf function, defined in the stdio.h library, is used to write formatted data to the

standard output unit, which is typically the screen.

Syntax:

printf (format,expression 1,..,expression n);

format: A text or string that is displayed as is on the screen, except for the "%" symbol to

44

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

indicate expression formats and the "\" character for escape sequences.
* expression: Computed to obtain a single value, which will be displayed on the screen in the
specified format <format>.

The format follows this structure:
%$[flags] [width] [.prec]type_char
where it always starts with %.
o flags
» - Left-align the output.
»+: Show the sign of the number.

» Empty: Display a space i stead of + for positive numbers.

e width: Represents the minimum number of digits to display for a specific value. If this
number is greater than the required size, the difference is filled with spaces or zeros,
depending on whether the number starts with 0 or not.

e prec: The number of digits after the decimal point for floating-point numbers.

e type_char: A character representing the type of value to output.

format | use

%d | To input or output a number in the decimal system (10)

%0 To input or output a number in the octal system (8)

%X To input or output a number in the hexadecimal system (16)

%u | To input or output an unsigned natural number unsigned

%ol To input or output an integer (int) like %d

%f | To input or output a real number (float)

%c To input or output a character (char)

%S To input or output a string (char[], char*)

%e To input or output a nbr in scientific format such as 3e-2

— Some characters are special, so we must use an escape technique to use them. In C, the
escape character is (), backslash, and we use it to add a new line "\n' or a tabulation (a large
space) "\t'. To print double quotes ("), we use ", to print a backslash () we use \, and to print %
we use %%.

example:

45

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

printf ("Hello");

displays Hello

int a=13;

a=(13)10 a=(15)8 a=(D)16

printf("a=(%d) 10\ta=(%o) B\ta= (4X) 16\n", 2 ,a ,a);

a=Gea;
. EUSRIAR LUNCE M e i a=00 a=0.000000 a=B a=b
printf {"a=%1\ta=%f\ta=%kc\ta=%c\n ,a2 ,a ,a ,at32);

Y Because 66 is not necessarily 66 in float

And 66, 1if we see it as a character,
represents the letter B, while 66 + 32 =
98 represents the coding of the letter bin

lower case.

float p1=3.1415926;
printf ("%E\t%.4£\t%06. 28" ,pi ,pi ,pi);

3141593 31416 003.14

9.5.2 scanf (scan formatted)
The scanf function, defined in the stdio.h library, is used to read formatted data fromthe
standardinput unit, typically the keyboard. The function copies the value entered by the user
to the variable's memory location. Therefore, & is used before the variable name.
Syntax:
scanf (format, &variable 1,.., &variable n);
e format: A string representing the reading format.
e variable: The variable name. It's preceded by &, except for string variables (pointer
types).
The format takes the following form:
% [width] type_char
e width: A number that controls the maximum number of characters to be read in the
current input field.
e type _char: A character representing the type of value to be entered. The same

symbols in the table for printf.

Example:
scanf ("%s",name) ; & is not used to read a string.
scanf ("%d%f", &a, &b); Enter a number, then press space, then enter the second

number, then press enter.

Note: It is recommended to enter only one value per scanf instruction.
Avoiding problems with characters and strings in scanf
When reading a character using scanf("%c"...), the user enters the initial character and

subsequently presses the Enter key. This action results in the creation of the "\n' character,

46

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

which remains stored in memory. When the program encounters the scanf("%c", ...)
instruction a second time, it doesn't await the user's input; instead, it directly assigns the "\n'

character to the second variable.

To overcome this predicament, in the second scanf, we introduce a space ' ' after the %
symbol, as demonstrated here: scanf("% c"...). Alternatively, we can utilize the getch function
from the string.h library to resolve this issue.
Example: We'll try to enter 3 letters a, b, ¢ in the variables cl, ¢2 and c¢3. We use:

scanf ("%c", &cl) ;

seanf ("sc"; &C2) ;

scant ("3 &c3)
The user presses a, then enter. The program assigns a to ¢l and ‘n to ¢2, and waits for the
user to enter the second character to be assigned to ¢3. To avoid this problem, we use:

scanf ("%c", &cl);

geant ("se" ,862) ;

scanf ("%c", &c3) ;

The 1ssue with scanf arises when attempting to input a string containing spaces into a variable.
For instance:

scanf ("%$s%s",vl,v2);

Upon entering the words "math info" and pressing Enter, the program assigns the first word to

vl and the second word to v2. However, if we intend to input both words, such as a

compound name, into a variable, we use:

scanf ("%s",vl);

Upon entering the words "math info" and pressing Enter, the program assigns only the first

word to v1, while the second word is lost.

To circumvent this problem, we employ the gets function, defined in the string.h library:
#include<string.h>

gets(vl);

10.Structure of a C Program

1 $include<stdio.h>

Py // Public declarations (constants, types and variables)

47

Algorithmsanddatastructures1 Chapter2:Simplesequentialalgorithm

5 Int maini)

4 {

5. //Local declarations{constants and variables)
6 //instructions

7 return 0O;

8 }

explanation:
1. Include the stdio.h library which contains scanf and printf.
2. Place for public declarations.
3. main(): Every program must have a starting function called main which indicates the entry
point of the program.
4. Start of the main function body, corresponding to the "begin" in algorithms.
5. Place for local declarations.
6. Instructions.
7. return: The main function must return an integer (int). It returns 0 to the operating system to
indicate successful execution.
8. End of the main function and the program, corresponding to the "end" in algorithms.

Observations:

— Declarations can be made either in the place of public or local declarations.

— Code formatting, alignment, margins, spaces, and line breaks after special characters ([{}])
=+, ;: etc. are not significant in the program. Much of the program can be composed on a
single line, with semicolons serving as separators between statements.

— Code formatting, alignment, margins, spaces, and line breaks should be used for program

readability.

48

Algorithmsanddatastructures1

Chapter2:Simplesequentialalgorithm

An example demonstrating the process of translating an algorithm into C.

surface

algorithm C comment
Rlgorithm circle area The algorithm name
becomes the file name
circle area.c
Const P=3.14 Const float P=3.14; can use #define P 3.14
Var r, s:sntier int r, s; There 1s no var word in C
//r radius and s area // r the radius and s the

This is not part of the
program. but only for
explanation,

o
“I
[Ln]
b
g

int main()

{

WVariables can be declared
after {.

Write ("Enter radius

printf ("Enter radius ‘\n");

‘n to return to the line

Read (x)

scanf ("&d", &r);

Don't forget & before the
variable

sp*c*zx

s=ptr¥r;

Each instruction ends with

ar

circle is:)

Write ("The area of the

printf ("The area of the

circle is: %d™ , 8):

The format must be given

End

1

example2

Write a program to calculate the average for ADSI.

#finclude <stdic.h>
int main{) |

float cont, td,

moy ;

printf ("Enter the exam score \n") ;

scanft ("$£f", &cont)
printf ("Enter TD score
scanft ("s£f", &td)
printf ("Enter TP
scant ("%E", &tp)

moy = (cont * 3

printf ("The average

return 0;

+

[i]

1 ol K-

An"]

t}_:':l /£ 5 ’
T.28" , mov) ;

49

University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science
Department of Mathematics and Computer Science
Module: Algorithms and data structure 1
Promotion: 1st Year Math and CS Academic year: 2024-2025
Tutorial 01

Exercise 01:
a) Write an algorithm in natural language to prepare an omelette.
Exercise 02:
a) Write an algorithm in natural language to solve an equation of type ax+b = 0.
b) Write an algorithm to solve and find solutions to this equation.
Exercise 03:
Problem: given an equation of type ax’> + bx + ¢ =0
a) Write an algorithm to solve and find solutions to this equation.

b) Adopt a similar approach to obtain an algorithm in tree form.

50

University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science
Department of Mathematics and Computer Science
Module: Algorithms and data structure 1
Promotion: 1st Year Math and CS Academic year: 2024-2025
Tutorial 02

Exercise 01: Determine the error if it exists for each identifier STD, 3, bonne chance, TP,
mathématiques, A, D-A, end, TP

Exercise 02: In this algorithm indicate the variables and give their type:

Algorithm ex2 ;
var a, b, ¢ : integer ;
begin
a+<35;
be—12;
c2%*a-b;
b«2*%b-c*3;
a«—b-a*4+c*5;
write ('A=",a,' B="b,' C=',c);
end.

What do these variables contain?
Exercise 03:
Algorithm ex3 ;
var a, b, ¢ : integer ;
begin
read (a,b);
a<atb ;
b«a-b;
a<—a-b;
write('A=",a,' B=',b);
end.
Exercise 04: Give the type and result of the following expressions, in algorithm and in C
language.
a) 5-3.%2+2

Lk

b) 10/5%5

¢) (7+6) mod 5

d) 12 div2 > 17 mod 5 *2

e) 1380 div 60 mod 60

f) 'h'>'Q'and 17>5

g) non (h>'Q")

Rewrite previous expressions in C language.

Exercise 05: Give the values of the variables after the execution of each instruction of this
algorithm.

Algorithm ExoS5 ;

var A, B: integer ;

begin A< 7 ;

B<A-4;

A€A-1;

B<A+5

End.

Exercise 06: What will be the values of the variables A.B and C after execution of the

following instructions for each algorithm.

Algorithm One Algorithm Two Algorithm Three | Algorithm Four Algorithm Five
Var A,B: integer ; Var A, B, C:integer; | Var A, B:integer; | Var A, B,C:integer; | VarA, B,C: Character;
Begin Begin Begin Begin Begin
A +10; A<5; A<5; A=3; A € "423";
BeA+3; B %3; B e« A+4; B +10; B - "12%;
A+ 3; C«+A+B; A4A+]; C4+ A+B; C - A+B;
End Ae2; B+ A-4; B* A+B; End
C + B-A; End A=C;
End End
Algorithm SIX - In the Algorithm 6, do the last 2 instructions allow to exchange the values
;:;‘:;B""mgm between A and B? If we reverse between the last 2 instructions, does this
A *5, change anything ?
B - 2;
A <+ B;
B €+ A;
End

Exercise 07: Give the values of the variables after execution.
Algorithm Exo7 ;

var A, B: integer ;

begin

A€ET;

52

B<S5
A€B;
B€A
end.

- Does this algorithm allow to exchange the values of A and B?

- Propose changes to exchange the values of A and B.

Exercise 08: Supposing we have three variables A,B and C.

- Write an algorithm transferring the value of A to B, The value of B to C and the value of C
to A.

Exercise 09: Evaluate the following expressions
3*2-8) / (3°2)5 [/ 325 J 3+(5"3) J (3+5)*3 [3+5"3 [3+5/2

5+42>4 / 5+3>=7 AND NOT (5-3=8) /NOT (6+3<=5) OR (65-7=458-95)

Exercise 10: Let's consider the following algorithm:
Algorithm Ex10 ;

var a, b: integer ;

begin

a<—7;

b—5;
a—a*b;

b—a/b ;

a<—a/b;

end.

- What does this algorithm do?
Exercise 11: Run this algorithm:
Algorithm assignment ;
Variables a, b, ¢, X, vy, z : integer ;
d, e, f, g: Boolean ;

h, 1: character ;

begin

a<—2; he'¢’; be3*a; c«10; i<rT; de—(b-c)=a; e«Notd; c<b-c-
a;
f—(c#12)and(e); y«—c; x<b; g<h>i;

end.

53

Algorithms and data structures 1 Chapter 3: Conditional structures

Chapter 3: Conditional structures

1. Introduction

A program consists of instructions. Most of these instructions are executed in the
order in which theyappear. Once an instruction is executed, it moves to the next instruction
(sequential). Instructions are often separated by a semicolon ";". However, some
instructions modify the program flow, known as control structures. For example:
conditional structures, loops, function calls, and unconditional jump instructions. The

conditional structure comes in three types: the simple conditional structure (if then), the
complex conditionalstructure (if then else), and the multiple-choice structure (switch).
2. Simple Conditional Structure "if then"

In programming, we often encounter cases where we need to decide whether an
instruction should be executed or not based on whether a condition is true or false. For
example, in a dessert recipe, you might findinstructions like: If you have almonds, add them
to the recipe, or if you like lemons, add a little more. The program's execution flow will
change as the input changes. To express conditions in programming, we use theif...then test,
which is the simplest conditional instruction. It consists of two parts:

¢ Condition: A Boolean expression with a value of either true or false.

¢ Block of instructions: executed if the condition is true, or ignored if the condition is

false.

2.1 Syntax:

Algorithm C
if Condition then if (Condition)
Block of instructions {
EndIf Block of instructions
The rest of the instructions }
The rest of the instructions

The words "if," "then," and "EndIf" (or "fi") are reserved words in the algorithm.
The same applies to"if" in C. In the algorithm, the condition is always between "if" and
"then," while in C, it is always enclosed in parentheses (). To build the condition, we use
comparison operations (>, <, =, #, ...) and logical operations(and, or, not, ...).

Instructions belonging to the "if"" in C are enclosed in curly braces {} which can be
omitted if they contain only one instruction. (Optional {}). If we find a set of instructions
after the "if," and we don't find thecurly braces, then only the first instruction is associated

with the condition, and the rest of the instructions willalways be executed regardless of the

54

Algorithms and data structures 1 Chapter 3: Conditional structures

condition. However, if there is more than one instruction inside the curly braces {}, then
both curly braces are mandatory.
Note:
e InC, the Boolean type is represented by an int. False is represented by 0, and true is
any number otherthan 0.

e Thereisno";" after }.

Inst Bloc

inst

2.2 Flowchart
2.3 Execution
The execution process of the conditional instruction is performed by evaluating the

condition, which results in a Boolean logical value. If the result is true, the block of
instructions between "then" and "EndIf" in the algorithm, or between {} in C, is executed,
followed by the rest of the program instructions. If the result is false, the instructions
between "then" and "EndIf" are ignored, and the rest of the program instructions are
executed directly.
2.4 Example
Write a program that reads an integer, then displays a warning if it's negative, and finally

shows its square.

Algorithm C screen
algorithm #include <stdio.h> Enter a number
root var x ¢ int main () 2
integerbegin { the square is 4

write ("Enter a number: ") int x ;
read (x) printf ("Enter a number: \n"); LA A
If %<0 then scanf ("3sd", &x) ; Enter a number
write ("nbr is negative ") if (=<0) -3
End If {// can be removed printf("nbr is |nbr is negative
write ("the square is " , Xx*X) negative the sgquare is 9
end \n") :
}
printf ("the square is %d" ,x*x)
1

3. The Complex Conditional Structure "if then else"

In a simple conditional, "if" specifies what to do if the condition is true, but not what to

55

Algorithms and data structures 1 Chapter 3: Conditional structures

do if it's false. However, sometimes it's necessary to decide what to do in both cases. This
leads to the "if else" (if...then...else)structure, which is an extension of the simple "if." The
complex conditional structure "if else" consists of threeparts:

e Condition: A Boolean expression with a true or false value.

e First block of instructions: executed if the condition is true, or ignored if false.

e Second block of instructions: executed if the condition is false, or ignored if true.

3.1 Syntax:

Algorithm C
If Condition then if (Condition)
instruction block 1 {
else instruction block 1
instruction block 2 }
End If else
The rest of the instructions {
instruction block 2
}
The rest of the instructions

The word "Else" is a reserved word in the algorithm. The same applies to "else" in C. In C,
{} can be omittedif it contains only one instruction. If there is a set of instructions after "if"
or after "else," and curly braces arenot found, it means that only the first instruction is

related to "if" or "else."

Inst Bloc Inst Bloc2

¥
A

inst

3.2 Flowchart

3.3 Execution
Execution The conditional instruction is executed by evaluating the condition, which results
in a Boolean value. If the result is true, the first block of instructions between "then" and
"else" in the algorithm, or between {} before "else" in C, is executed, followed by the rest of the
program instructions. If the result is false, the second block of instructions between "else" and

"EndIf" in the algorithm, or between {} after "else" in C, is executed, followed by the rest of the

program instructions.
3.4 Example

Write a program that calculates the absolute value of an integer and displays it on the screen.

56

Algorithms and data structures 1

Chapter 3: Conditional structures

Algorithm L Screen
algorithm absolute #include <stdio.h> Enter a nbr
var x, y : integer int main () { -5
begin int %, vy ; =5 =5

write ("Enter a nbr: ") printf ("Enter a nbr:\n")
read (x) scanf ("%d", &x) :
if x>=0 than if (x>=0)
VX { //_can be deleted F [0)
else Y= 7 s
) } o o
ye—x e else
End If else —
write (nln ® ’II|=IIry) { // can be deleted !
end : S e F
printf (("[%d|=%d", x, v)) -
i

3.5 Conditional assignment in C

If we have a variable v takes one of the values v1 or v2 depending on condition b, i.e. :

if (b)
v=vl ;
else

v=v2 ;

In this case, the “? : ”* can be used and its

syntax is as follows:condition ?
expression_true : expression_false

Example

v=b ? vl :v2 :

result average

3.6 If-else extension

condition is a Boolean condition

>=10 7 " Admitted"

expression_true The expression returned if the condition is true.

expression_false The expression returned if the condition is false

" Bdjourned" ;

" If-else" can be used to test multiple conditions and to select the appropriate

treatment for each case.For instance: to determine whether a student is accepted or not, there

are several cases. Either they are accepted without compensation, or they are accepted with

compensation, or they are accepted but with debts, or they are postponed. To determine

this, one must examine the averages of the first and second semesters (sl and s2), the

annual average (MA), and the total earned credits (Crd).

57

Algorithms and data structures 1

Chapter 3: Conditional structures

The solution

Algorithm

algorithm zbsolute
var sl, sZ, MA: real
Crd : integer
begin
write ("Enter
semester averages
read (sl,s2)

first and second

IIJ

write ("Enter annual average ")
read (MA)
write ("Enter total credits ")
read (Crd)

If s1>=10 and s2>=10 then

#include <stdio.h>
int main () {
float s1, s2,
int Crd ;

MA ;

printf ("Enter first and second semester

averages \n") ;

scanf ("$£%£", &sl, &s2) ;

printf ("Enter annual average \n")
scanf ("%£f", &MA) ;

printf ("Enter total credits \n")
scanf ("%d", &Crd) ;

if (sl>=10 && s2>=10)

r

I3

write ("admitted without compensation
)
else
if MA>=10 then
write("admitted
compensation")
else
if Crd>=45 then
write ("admitted with debts
else
write
end if
end if
end if
end

with

"}

("adjourned ")

printf ("admitted
compensation") ;
else if (MA>=10)

without

printf ("admitted with compensation") ;

else if (Crd>=45)

printf ("admitted with debts ")
else

printf ("adjourned ")

}

r

4.

The Multiple-Choice Conditional Structure "switch"

To choose an action among multiple options, we use the "switch" statement. However,
g pic op

when dealing withmore than two options, nested "if"' statements can be used, resulting in

nested "if" statements for each choice. This can make the program harder to read. The

"switch" test is a special case of nested "if else" statements. Itdetermines which block of

code to execute based on the value of the tested variable. It is used when we havemultiple

outcomes and the condition is tested multiple times using the same variable. The "switch"

statementis more readable and consists of:

e The expression to test, typically a variable.

e The values to test with corresponding blocks of instructions.

e An optional default block if there is no match with any value.

58

Algorithms and data structures 1

Chapter 3: Conditional structures

4.1 Syntax

Algorithm C

case expression of switch (expression) |
val 1 : instruction block 1 case val 1 : instruction block 1
val 2 : instruction block 2 break ;
val n : instruction block n case val n : instruction block n;
else break ;

ancther instruction block default:
End case another instruction bleock
The rest 1

The rest

The words "Case" "else" and "End Case" (or " EndCase") are reserved words in the
algorithm. The sameapplies to "switch" "case" and "default" in C.
— Expression: An expression that calculates an integer or character value. It's typically
a variable.
— val 1, ..., val_n : Values or constants of the same type as the expression.
— Block of instructions: One or more instructions executed if the expression value
matches Value 1.
Note: switch is used instead of nested “if” we're going to test a single instruction or
variable, of integer orcharacter type, several times with constant values.
4.2 Rules regarding switch
e The curly braces {} of the switch and the parentheses () are necessary and cannot be
omitted.
e Each Value i must be different from the others. For example, writing "case 1" twice
1s illegal.
e Value i can be placed in any order. However, it's recommended to order them in
ascending order forbetter readability.

e A block of instructions can contain any number and type of instructions.

The "break;" statement is optional. It's used to exit a switch immediately, moving
the program flowout of the switch.
e The default block is optional. If no Value i matches, the execution context will

move to the defaultblock. It should be the last case.

59

Algorithms and data structures 1 Chapter 3: Conditional structures

4.3 Flowchart

—— | inst Bloc 1

| instBloc2 |—F

—| inst Bloc n I—""ES

—I Other inst bloc

4.4 Execution

The "switch" statement is executed by evaluating the expression, then jumping to
the block of instructions corresponding to the matched Value i. After that block is
executed, the execution will continue until it encounters a "break;" statement or reaches the
end of the switch. If there is no match, the execution will move to the default block (if
present), then continue with the rest of the program instructions.

The execution of "switch" in C slightly differs from the algorithm's "case" In C,
after executing the block for Value 1, if no "break;" statement is encountered, the execution
will continue with the subsequent block until a "break;" statement is reached. The execution
will then move to the rest of the instructions outsidethe switch.

To make "switch" equivalent to "case algo" a "break;" statement should be added at

the end of each block.

If multiple values share the same block of instructions, the algorithm can use a

comma. In C, the first
value should not have instructions or a "break;" statement. Assuming values 7 and 9 have the

same treatment: Algorithm:

Algorithm C
7 ,9: instruction block case 7:
case 9:
instruction block
break;

4.5 Example
Write a program that reads an integer less than 10 and displays the corresponding English

word on the screen.

60

Algorithms and data structures 1

Chapter 3: Conditional structures

Algorithm C
algorithm conversion; #include <stdio.h>
var nb integer; int main () {
begin int nb ;
write ("enter a nbr "); printf ("enter a nbr \n")
read (nb); scanf ("%d", &nb)}
case nb of switch (nb) {
0 : write ("zero"); case 0 : printf("zero") :
1 write ("one"); break ;
2 : write ("two"); case 1 printf ("one") ;
7 break ;
9 : write ("nine"); i
else case 9 printf ("nine") ;
write ("not treated"); break ;
End case default:
end. printf ("not treated") ;
}
return 0 ;

}

S. Branching Instructions

Branching is the process of moving between executed program instructions by the

processor, where itperforms a "jump" to a specific address instead of continuing to execute

instructions sequentially. There are four instructions in C that can unconditionally modify

the execution flow of a program: break, goto, continue,and return.

5.1 Break Statement

We've already seen it with "switch,"

where it ends the "switch" instruction, moving

the flow to the firstinstruction after "switch." In the case of a nested "switch," it only exits

the immediate enclosing "switch." It'salso used to exit loops (covered in the next lesson). In

this case, "break;" is usually within an "if."

Example

switch (grade) {

case ‘A’

case ‘a’ printf ("excellent\n")
break ;

case 'b printf ("good\n") ;

case ‘c’ printf ("you can do betteri\n™) ;
break ;

default : printf("try again\n") ;

e [f grade contains the letter a or A, excellent.

¢ Ifit contains b «it will appear good and you can do better

e Ifit contains the letter c, it only shows that you can do better.

61

Algorithms and data structures 1 Chapter 3: Conditional structures

e If'it contains another character, try again.
5.2 Goto Statement
It transfers the program execution to a named instruction. This name, or "label," is
preceded by a colon":". Any instruction can be named with a valid identifier followed by a
colon.
Label syntax: label : instruction:

where label is a valid identifier. Such as:
here : printf ("zero") ;
Syntax for calling: To access this instruction from anywhere, use the following syntax:
goto label ;
where "label" is the name of the instruction, e.g.: To access the instruction "here" from

anywhere, use:

goto here ;
Note:
e "case" and "default" are special naming methods used within a "switch."
e Goto can be used to repeat instructions without the need for loops.
e It's advisable not to use "goto" and labels extensively, as it makes the program
difficult to understandand maintain for humans.
Example:
again :
goto again ;
5.3 continue Statement
It's used with loops to move the flow to the end of the loop and directly to the next
iteration, withoutcompleting the loop instructions. It's typically within an "if."
Syntax continue ;
5.4 Return Statement
It's used to exit functions and return a result. (semester 2)
Syntax: return expression ;
Example: return 0 ;

As commonly used at the end of the main() function

62

University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science
Department of Mathematics and Computer Science
Module: Algorithms and data structure 1
Promotion: 1st Year Math and CS Academic year: 2024-2025
Tutorial 03

Exercise 01:

Write an algorithm that reads the name and birth year of a person, as well as the current year.
Then, it displays the age of that person.

Display example:

Name: Said

Year of birth: 2005

Current year: 2023

Hello Said, you are 18 years old.

Exercise 02:

Write an algorithm and its C program to calculate the average of the analysis module.
Exercise 03:

Write an algorithm and its C program that receives an angle in degrees, then displays this angle
in grades and radians.

N. B. : rad = deg® x n/180 gr=m/200 rad

Exercise 04:

1) Write an algorithm that displays addition, subtraction, division and multiplication of real
constants

2) What will happen if the two numbers are declared as variables which will be entered by
keyboard?

Exercise 05:

1) Write an algorithm allowing you to exchange the values of two variables A and B, of the
same type.

2) A variation of the previous one: we have three variables A, B and C. Write an algorithm

transferring the value of A to B, the value of B to C and the value of C to A.

63

Exercise 06:

1) What does the following algorithm produce?

Algorithm ex®6 ;

var A, B, C : char;

begin

A«—"423" B«"12";C— A +B;

end.

2) What does the following algorithm produce?

Algorithm ex6 ;

var A, B, C : char ;

begin

A« "423":B«—"12";C—A&B;

end.

Exercise 07:

Write an algorithm that reads the price excluding taxes (HT) of an item, the number of items
and the VAT rate, and which provides the corresponding total price including taxes (TTC).
Exercise 08:

We consider the following algorithm:

Algorithm Operation;

Var A,B,C,D.E: boolean; X: Real;

Begin

Read(x); A — (X>5); B — (X<2);C+— (X>0); D—(AANDB)OR C; E— A AND (B
AND C); Write (D); Write (E);

end.

For X=7, what are the values displayed by the algorithm?

64

University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science
Department of Mathematics and Computer Science
Module: Algorithms and data structure 1
Promotion: 1st Year Math and CS Academic year: 2024-2025
Tutorial 04

Exercise 01:
Write an algorithm that allows entering 3 integers. Then, this algorithm only displays the even
numbers.
Exercise 02:
Write a program that calculates the maximum between 2 numbers and another one that
calculates the maximum between 3 numbers.
Exercise 03:
Write an algorithm with its C program that calculates the alms (aumone) or zakat. This
algorithm receives a person's wealth along with the price of one gram of gold. Then, it
displays the zakat amount. Knowing that the zakat rate is 2.5% and the Nisab threshold is 85
grams of gold.
Exercise 04:
Write an algorithm that reads a year A and informs us if this year is a leap year (February has
29 days) or not.
N.B.:

e [f A is not divisible by 4, the year is not a leap year.

e [If A is divisible by 4, the year is a leap year unless A is divisible by 100 and not by

400.

Exercise 05:
Write an algorithm that calculates the average of the analysis (exam and tutorials). Then, it
calculates the final average, and if the average is below 10/20, it asks the user to provide the
make-up grade. In this case, the calculation of the final average considers the better grade
between the original exam and the make-up exam, and finally, the algorithm displays the final

average.

65

Exercise 06:

Write an algorithm and its program for a minicalculator that offers the user to perform one of
the following operations (addition of two numbers, subtraction of two numbers, division of
two numbers, multiplication of two numbers, square root of a number, and power of a
number).

Exercise 07:

Write a program that reads a character, and if it is a letter, it displays it in uppercase;
otherwise, it displays it as it is.

Exercise 08:

Write an algorithm with its C program that allows reading two integers A and B and checks if
A is divisible by B or not.

Exercise 09:

A store sells 3 products, pl, p2, and p3, with respective prices of 24 DA, 32 DA, and 43 DA.
A discount of 1% is granted if the pre-tax amount exceeds 220 DA, and a discount of 2% is
given if it surpasses 560 DA. Write an algorithm with its C program that reads the quantity
purchased for each product, and then it displays: « The total price of each product, « The total
pre-tax price, * The total pre-tax price after the discount, * The amount of VAT, knowing that
the VAT rate is 19%, * The total amount to be paid.

Exercise 10:

A cinema offers the following rates for groups:

* 8 DA per place for the first 5;

* 6 DA per place for the following ones up to 10;

* 5.50 DA per place, those over 10.

1. The head of an association comes to buy tickets; how much will he have to pay for 4
places? for 9 places? for 15 places?

2. Write an algorithm to obtain the amount to pay when the number of places is given.

3. Test it for the values from question 1.

66

Algorithms and data structures 1 Chapter 4: Loops

Chapter 4: Loops

1. Introduction
A loop is a control structure aimed at executing a set of instructions repeatedly multiple

times. It is executed based on either a known number of iterations in advance (iterative loop)
or until a condition allows the loop to exit (conditional loop). There are three types of loops:
e Conditional loop with a pre-condition: The condition is checked before the first iteration.
e Conditional loop with a post-condition: The condition is checked after the first iteration.
e lterative loop: A counter keeps track of the number of iterations.

A programming error can lead to a situation where the exit condition is never satisfied.

This results in the program running indefinitely, which is called an infinite loop.

2. The "While" Loop
The "While" loop is a pre-condition loop where a set of instructions is repeatedly executed
based on a Boolean condition. The "while" loop can be seen as a repetition of the "if"
statement. It is used when there's a set of instructions that need to be repeated with the
possibility that they may not be executed at all (0 or more times), depending on the predefined
condition. The loop consists of two parts:

¢ Condition: This is a logical expression with a value of either true or false.

e Instruction Block: It is executed as long as the condition is true.

2.1 Syntax
Algorithm C
WhileConditionDo while (Condition)
InstructionBlock {
EndWhile InstructionBlock
Restoftheprogram }
Restoftheprogram

"While" "do" and " EndWhile" are reserved keywords in algorithms. Similarly, in C, the
term used is "while."

The condition is always placed between the keywords " While " and " do" in algorithms,
while in C, it's always enclosed in parentheses. To create the condition, we use comparisons
(>, <, =, #, ...) and logical operations (and &&, or ||, not !, ...).

In C, the instructions for the "while" loop are enclosed in curly braces {}, and they can be
omitted if they contain only a single instruction (optional {}). If we encounter a set of

instructions without the curly braces, it means that only the first instruction is repeated.

67

Algorithms and data structures 1 Chapter 4: Loops

Notes:
¢ In C, the Boolean type is expressed using an int. False is represented by 0, and true is
represented by any non-zero number.

e No ";" is needed after the closing curly brace "}".

2.2. Flowchart:

—
1
|
|
yes |
Bloc inst
Reste inst _——

2.3 Execution
The execution process of the "While" loop begins by evaluating the condition expression,
which results in a Boolean value. If the result is true, the instruction block between "Do" and
"EndWhile" in the algorithm, or between the curly braces in C, is executed. The condition is
re-evaluated, and the process repeats. When the test result becomes false, the loop exits,
jumping to the instruction immediately following the loop. The condition is often referred to
as the "continuation condition."

Notes:
Since the While loop checks the condition before the first iteration, it's possible that the
condition isn't checked the first time, and so its instructions aren't executed at all.
2.4 Example
Write a program that reads two integers and then displays the quotient of the first divided by
the second, without using the division operator (/ or div).

Note: Division is repeated subtraction.

68

Algorithms and data structures 1

Chapter 4: Loops

Algorithm

C

Screen

Algorithm gquotient;
var x,vy,d,r:integer;

/*x first nbr, vy second, g
quotient, r remainder @ */
begin

write("enterZnbrs") ;

read (x, V¥):

qe0;

re—¥;

while r>=y Do

r<—r—y H
gégt+l;
Endwhile;
write ("the gquotient of",
%X, "on", vy, "is", g, "the
remainder is", r)
end

#include<stdio.h>
int main{()

{

iRt

Hy Y: qx ¥ H
printf ("enter 2 nbrs\n");
scanf ("3d3xd", &x, &vy) ;
g=0;
r=x;
while (r>=vy)

{

r==vy;

gt+

}

printf ("the gquotient of 3d
over %d is %d the remainder
is &d\n"}, %, ¥, ., T) :

}

enter 2 nbrs

17 ‘5

the quotient of 17 owver 5
is 3 the remainder is 2

The algorithm takes two numbers x and y, and returns the quotient q and remainder r.

At the beginning, let's assume that the remainder is x, and at each iteration we decrease the

n,..n

nominator "y

until it becomes less than the denominator. Each time we decrease

n..n

y", we add

1 to the quotient q. The while loop can never be executed if x is less than y from the start. In

this case q=0 and r=x.

Example2

Write a program that doesn't stop until the user presses the Enter key.

#include<string.h>

int main()

{

while (getchar()!
=TS
0;

}

3.

return

The "Do...While" Loop

The "Do...While" loop is a post-condition loop where a set of instructions is repeatedly

executed based on a Boolean condition. It's used when a set of instructions needs to be

executed repeatedly at least once, regardless of the condition (1 or more times). The loop

consists of two parts:

¢ Instruction Block: It's executed as long as the condition is true, except for the first

time when it's executed regardless of the condition.

e Condition: A Boolean expression with a true or false value.

69

Algorithms and data structures 1 Chapter 4: Loops

3.1 syntax:

Algorithm C
Do do{

InstructionBlock InstructionBlock
whileCondition }
Restoftheinstructions while (Condition) ;

Restoftheinstructions

The words "pe" and "while " are reserved keywords in algorithms and C. The condition
always comes after "while " in algorithms and is always enclosed in parentheses () in C.
To construct the condition, we use comparison operations (>, <, =, #, ...) and logical
operations (and &&, or ||, not I, ...).
The instructions for "do...while" loops in C are enclosed in two curly braces {} within the
"do" and "while" statements. The curly braces {} can be omitted if they contain only a
single instruction (optional {}).
Observation :

¢ The "do...while" loop in C always ends with a semicolon ";".
The " do...while " construct can be expressed in algorithmic as "Repeat...Until" (until the

condition is satisfied). In this case, the condition becomes a termination condition, not a

continuation condition, which is the negation of the " while" loop condition.

Example:
do...while Repeat...Until
Do Repeat
Instruction block; Instruction block
While x>y Until x<y
The rest of the instructions; The rest of the instructions

Note that the negation of > is <.

3.2 Flowchart:

A 4
P Bloc
yes

'nn

rest

70

Algorithms and data structures 1 Chapter 4: Loops

3.3 Execution
The execution process of the conditional loop "Do...While" involves executing the instruction
block between "Do" and "While" in the algorithm, or between "do" and "while" in C. After
that, the condition expression is calculated, resulting in a Boolean value. If the result is true,
the instruction block is executed again, and the process continues until the test result becomes
false, at which point the loop exits, jumping tothe instruction immediately following the loop.
Observation :
Since the "Do... While " loop executes the instructions of the first iteration before the
condition is verified, the loop executes at least one iteration, even if the condition is not
satisfied from the start.
3.4 Example:
Write a program that reads a set of integers using a single variable, stops at the first O that

reads it, then displays the number of integers entered.

Algorithm C Screen

algorithm readNbrs; #include<stdio.h> enter a nbr:5
var x,nb:integer Int main() enter a nbr:7
/*xto read nbrs, nb to count { enter a nbr:-2
nbrs */ Int x,nb; enter a nbr:0
begin nb=0; The number of

nb<-0; do{ numbers is 3

Do printf ("enter a nbr:");

write("enter a nbr:"); scanf ("sd", &x) ;

read (x); nb++;

nb<nb+l; } .

while x#0 wh:l.le(xf=0);

write ("The number of numbers| PTintf("The number: of
is", nb-1); numbers is %d4"), nb-1) ;
end. }

The algorithm needs variable x to read the numbers and variable nb to count the numbers. We
set nb 0 as the initial value, then enter a number x and add 1 to nb. If x is 0, we stop,
otherwise we repeat the loop until the user enters the number 0. The loop will run at least

once. Finally, we show the value of nb-1 so that the number 0 is not counted.
4. The "for" loop

The "For" loop is an unconditional iterative loop where a set of instructions is executed
iteratively a predetermined number of times. The loop consists of two parts:
e Counter: Used to count the number of iterations. It's a variable of integer or
character type, with aninitial value, a final value, and a method of incrementing or

decrementing.

71

Algorithms and data structures 1 Chapter 4: Loops

e Instruction Block: Executed in each iteration.

4.1 Syntax (Algorithm)

Algorithm

For Counter<Initial Value To Final Value Step Step Value Do
Instruction Block;
EndFor;

Rest of the instructions

The words For, To, Step, Do and EndFor are reserved words in the algorithm.

— Counter: A name for an integer or character variable.

— Initial value: This is the initial value taken by the counter variable.

—Final value: This is the final value the counter variable can take.

— step Value: This is the value of the counter variable at the end of each iteration. where

Counter « counter+step. Generally equal to 1.

Observations :

The Final value termination value is calculated once before the loop is executed.

The (Step step value) part is optional and, in its absence, means that step valueis 1.
If Step Value is positive, it is added to counter until counter > Final Value. In the
case of a negative step Value, it is decremented to counter < Final Value.

counter = Final Value is executed.

If Initial value is greater than Final value and Step Value is positive, the for loop
is not executed.

If Initial value is less than Final value and Step Value is negative, the for loop is
not executed.

The counter value cannot be modified inside the loop.

4.2 Syntax« for» in C

The "for" loop in C is more general than the "for" loop in the algorithm. It's closer to the

"while" conditional loop than to the " for " loop.

The general form Its algorithme quivalent

{

}

for(initialization;test;iteration) for(Counter=Initial Value;Counter<=

Instruction block {

Instruction block;

The rest of the instructions }

The rest of the instructions

72

Final Value; Counter += Step Value)

Algorithms and data structures 1 Chapter 4: Loops

for 1s a reserved word in C.

The first line of for consists of three parts enclosed in parentheses (), all optional, separated by
a semicolon ";".

— Initialization : This part is executed once before the loop is executed. It is generally used to
assign an initial value to the counter. Ex : i=0

— condition: a Boolean expression. Its value must be true to execute the loop. If the condition
is false, the loop is exited. It is evaluated at the start of each loop iteration. Usually, the
counter is tested. Like: 1<10.

— Iteration: It is executed at the end of each iteration. It is generally used to increment or

decrement the counter. Like : i++ or i--.

C "for" statements are enclosed in {} . They can be omitted if they contain only one
instruction ({} optional). If we find a set of instructions after for and we don't find the two
braces, only the first instruction is repeated.
Notes:
e The variable (the counter) can be declared in the initialization part, in which case the
scope of its definition is only inside the for loop, not outside it.
e The counter value in the iteration section can be incremented or decremented, or
modified in any other way.
e All "for" parts (initialization, test, iteration) are optional, and can be omitted and left
empty. but ";" is mandatory and cannot be omitted. The following script is valid for (; ;)
e The initialization part and the iteration part can contain several instructions separated by
commas ',
"o

e The instruction "; "is the empty instruction.

The following example codes are equivalents

Int i=0; for (int i=0,3j=10;i<j;i++,j--);

j=10;

for(; ;){
if (! (i<]j)
)break;
i++;
=%

}

73

Algorithms and data structures 1 Chapter 4: Loops

4.3 Flowchart:

h 4

initialization

no

yes i

Blocinsts

v

iteration

Restinsts L]

4.4 Execution:
The execution process of the "For" loop involves assigning the initial value to the counter
variable. If the counter's value is less than or equal to the final value (for positive steps) or
greater than or equal to the final value (for negative steps), the instruction block between "Do"
and "EndFor" (algorithm) or between curly braces in C is executed. After each iteration, the
counter is incremented or decremented by the step value. The process continues until the
counter value no longer satisfies the condition, at which point the loop exits, jumping to the
instruction immediately following the loop.
In C, the initialization expression is only executed once before the loop is executed.
The command then passes to the condition. It is tested before each iteration. If the result is
true, it executes the block of instructions between {} in C, then executes the iteration part,
then re-evaluates the test and starts again. The iteration part is executed at the end of each
iteration. When the test result becomes false, we exit the loop by jumping to the

instructions immediately following it.

74

Algorithms and data structures 1 Chapter 4: Loops

4.5 Example:
Write a program that reads two integers and then displays all the integers in between.
Algorithm C Screen
Algorithm numbers; #include<stdio.h> enter 2 nbrs
var x,y,l:integer; Int main() 5 9
/*I is the counter*/ { 56 789
begin Int x,y,1;
write ("enterZ2nbrs"); printf ("enter 2 nbrs\n") ;
read (%, Vy): scanf ("sdsd", &x, &y) ;
fori<x to y Do for (i=x;i<=y;i++)
write(i): printf ("%d\t", i) ;
Endfor; return(;
End. }

The algorithm takes two numbers x and y, and needs a variable i, which acts as a counter.
Where it takes successive values from the interval x to y. At the end of each iteration, 1 is
added to counter i. Since the step is implicitly 1. If x i1s greater than y, no number is
displayed. In C, it must be written.

{} has been omitted from the for loop because it contains only one instruction.

S. Nested Loops

A loop can contain any type and number of instructions, including another loop. When a loop
is inside another, it's called a nested loop. In nested loops, the execution proceeds as follows:

* Enter the outer loop

* Enter the inner loop

* Execute the inner loop until it's finished

* Return to the outer loop to execute the remaining instructions

* Repeat the process of executing the outer loop until it's finished.

Example
Write the program that reads the number of lines n, then displays on the screen in the first line

*, in the second **, in the third ***, and so on until it displays in the last line n *.

75

Algorithms and data structures 1

Chapter 4: Loops

Algorithm

C

Screen

Algorithm asterisk;
Var n,i,j: integer;

/*i,j counters*/

for i<1 to n Do
for j«<1 to I Do
write ("*");
EndFor;
EndFor;

#include<stdio.h>»
int maini()

{

for (i=1;i<=n;i++) {

for (j=1;j<=i;j++)
pringf (Mx)

printf ("\n");

}

enter no.of lines

5
s

Begin ing ni:3; ek

. * 3 2 H k&
write ("enter no. of lines"); printf ("enter no.of llnes");****
read(n) ; scanf ("%d", &n) ; T

return(;

}

End.

The external for(i) contains two instructions: for(j) and printf("\n"). The internal for(j)
contains a single instruction, printf("*"). printf("\n") is repeated n times. printf("*") is

repeated 1+2+...+n times.
6. Loop Equivalence

- The "While" loop is used when the number of iterations is unknown in advance and
when there's a possibility of not executing the instruction block at all.

- The "Do...While" loop is used when the number of iterations is unknown in advance,
and the instruction block must be executed at least once.

- The "For" loop is used when the number of iterations is known in advance, or
when the starting and ending values of the counter range are known.

- In general, any "While" loop can be expressed using "Do...While" by adding a
condition before "Do," andany "De...While" loop can be expressed using "While"
by adding the instruction block before "While." Any "For" loop can beexpressed
using "While" by initializing the counter before the loop, using the final value as
the exit condition, and adding the instruction that modifies the counter's value at the
end of the loop. However, it's not always possible to express "While" or
"Do...While" loops using "For," unless there's a counter involved.

- In C, "While "or" Do...While" loops can be expressed with "For," and all loops can

be expressed using "Goto" and "If."

76

Algorithms and data structures 1 Chapter 4: Loops

}

} while (i<=y)

Examples:
While
while do...while for goto +if
;=x H _':=K H ;I;:K H "_-’-=K H
while (z=v) { if (=>v) for (;x>v:) { again :
i de { =Y § if (>y) A
gtt ; S att+ ; : S R
} gttt i } 2 e
printEl-) ; } while (x>y) printf({_}) goto again ;
} printE{._}) ; }
1 printf (.} ;
do...while
| do...while while for goto +if
nb=0 ; nk=0 ; =x ;
do { printf ("entrer f("entrer un | again :
printf ("entrer nbr") nbr") » printf ("entrer un
nbr") ; scanf ("%d", sx) ; scanf ("%d", &x) ; nhE") 2
scanf ("%d", &x) ; nb++ ; nb++ ; scanf ("%d", &x) ;
nbt+t+ ; while { =!=0) { for { ;x!'=0;) { nb++ ;
} while (=!=0) ; printf ("entrer printf ("entrer un | if { >y)
peintef|) i nbr") ; nbr") ; goto again ;
} scanf ("%d", &x) ; scanf ("%d", &x) ; printf(.} ;
nbt++ ; nb++ ;
} }
printf (.} ; printf(.} ;
} }
for
for while do...while goto +if
for (i=x;i<=y;i++) i=x ; i=x ; i=x ;
printE("&d\t",i); while (i<=y){ if { i<=y) again :
printf ("Hd\E",1); do { if ((i<=v) {
it+ ; printf ("sd\&",1); printf("sd\t",1);
it+ ; it

goto agaimn ;

i

7. Loop Termination Commands

These commands are used within loops to perform an early exit from the loop based on a

condition. They are generally used when checking a condition. Any "for," "while," or

"do...while" loop can be terminated by executing any jump instruction like "break,"

"return,” or "goto" (to a label outside the loop). The "continue" instruction only ends the

current iteration and proceeds to the end of the loop, starting the next iteration. These

instructions are often used within an "if"" statement. In the case of nested loops, "break" and

"continue" only exit the inner loop.

Algorithms and data structures 1 Chapter 4: Loops

Example:

for (int i=1 ;icll ;i4+){ for (int i=1 ;i<l0 ;i+4)]
1f (1%3==0) continue ; 1£{i%3==0) break ;
printf ("dd\t", i) ; printf{"#d\t", i) ;

} }

All numbers will appear except for multtples of 3 The loop stops at the first multiple of 3:

124578 I 2

78

University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science
Department of Mathematics and Computer Science
Module: Algorithms and data structure 1
Promotion: 1st Year Math and CS Academic year: 2024-2025
Tutorial 05

Exercise 01:
Write an algorithm with its C program that calculates the factorial of a number.
N.B.: 0=l etn!=1x2x...xn
Exercise 02:
Write an algorithm to display all the common divisors of two numbers.
Exercise 03:
Write an program with its C program that determines if a number is prime or not.
e Using the for loop.
e Using the while loop.
e Generalize this program to display all prime numbers less than or equal to N (<N).
Exercise 04:
Write an algorithm/program in C that asks the user for a number between 1 and 3 until the
answer matches.
Exercise 05:
Write an algorithm/program in C that asks for a starting number, and then displays the next
ten numbers. For example, if the user enters the number 17, the program will display the
numbers 18 to 27.
Exercise 06:
Write an algorithm / a program in C which requires a starting number, and which then writes
the multiplication table of this number, presented as follows (case where the user enters the

number 7) Table of 7:

Tx1=7
7x2=14
7x3=21
7x10=70

79

Exercise 07:

Write an algorithm/program in C that requires a starting number, and that calculates the sum
of the integers up to that number. For example, if you enter 5, the program must calculate:
1+2+3+4+45=15

NB: we only want to display the result, not the breakdown of the calculation.

Exercise 08:

Write an algorithm / program in C which successively asks the user for 20 numbers, and

which then tells them which was the largest among these 20 numbers:

Enter the number number 1: 12

Enter the number number 2: 14

ete:

Enter the number number 20: 6

The largest of these numbers is: 14

Then modify the algorithm / program so that the program also displays in which position this

number was entered:

[t was number number 2

Exercise 09:

Rewrite the previous algorithm/program, but this time we do not know in advance how many

numbers the user wants to enter. Number entry stops when the user enters a zero.

Exercise 10:

Write an program with its C program that calculates the GCD (Greatest Common Divisor).

Given that:
PGCD(ab) = {PGCD‘[_E, (@%b)), b=0

a, b=10
Exercise 11:

Write an algorithm to calculate the nth term of the Fibonacci sequence defined by:

o =i rt —
wiln) = { g | =L r 1
(e — 22 + 1w — 1), si n = 1

80

Exercise 12:

If you knew that
n
(—1d* a 4 4 4 4 4
W_4;’2k+1 1 3's 7'o 11

Write a program that calculates the approximate value of «.
N.B. : make sure that n is strictly positive.
Exercise 13:

If you knew that

z 3 o

i R L. & 2 a - X
exp!_x_} = 2 o — it B N A > | ? | E |
Fe=10

Write a program that calculates exp(x) (X is a real number and n is an integer).

N.B. : make sure that n is strictly positive.

81

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

Chapter 5: Arrays and Strings

1. Introduction

In programming, data is organized as constants and variables in certain ways to facilitate
processing and quickaccess. There are different types of data, which can be divided into two
parts: Simple types, such as integers, floats, characters, and Booleans. Composite types:
arrays, structures, or records.

Let's say we want to input grades for 1000 students, analyze them, and calculate some
statistics. In this case, it would be unreasonable to use 1000 variables to store grades and
write 1000 input instructions in the program. It's better to use a single variable that can hold
all the grade values and use a loop to input them. A structure that can store multiple values
simultaneously is called an array.

In this chapter, we'll cover two types of static arrays: one-dimensional and multi-

dimensional arrays. We'll also see that strings are a special case of arrays.

2. The Array Type

2.1 Definition

Array: A complex data structure consisting of a finite set of homogeneous elements (of
the same type),accessible by indexes indicating their location.
An array can be seen as a group of variables of the same type with the same name.

Dimension : The dimension of an array is the number of indices needed to identify a single

element.

Index: When data is stored in an array, the element is identified by an index which, in C, is
a non-negativeinteger (= 0). The index ranges from 0 to N - 1 (where N is the array size).
One-Dimensional Array

It's also called a vector: you can access any of its elements using a single index, where each
index value selectsan element from the array.

2.2 Representation

The array is represented in memory as a sequence of adjacent cells. A new cell cannot be
removed or addedto the array after its creation (static). The following figure represents an

array of 8 real numbers.

82

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

index 0 1 2 3 4 5 6 7
value | 15(7(-3[0]9|2|0]-3

There's no difference in drawing the array vertically or horizontally.

2.3 Declaration

Algorithm C

arrayName [Size] : Array of elementType elementType arrayName [Size]

r

The phrase "Array of" is a reserved word in the algorithm, used to indicate that the variable

is an array.
- arrayName: The identifier name given to the array (the variable name).
- size: The number of elements in the array.

- elementType: The type of elements in the array, which can be of any type like
integer (int), float, ... To declare multiple arrays of the same type, use a comma "," while

specifying the size of each array betweensquare brackets [].

Example

const N=100 const int N=100 ;
marks [N] : array of real float marks [N] ;
tabl[50],tab2[20] : array of integer int tabl([50],tab2[20];

2.4 Initialization
In C, you can specify initial values for all array elements using curly braces { and } during
array declaration. Values are separated by commas ",", and these values must be of the same
type.

Example

int tab[] = {15, 7, -2, 0, 9, 2, 0, -3};

index 0 1 2 3 4 5 6 7
value | 157 1(2- (0|92 |0]3-

Note: You can specify the number of elements between the two square brackets "[]", or leave
them empty forautomatic calculation.
2.5 Usage

An array cannot be treated as a single block like array * 10; each element must be treated
separately. To accessa single element of the array, we use the array name with an index

inside square brackets [and], and the expression inside the brackets evaluates to an integer

83

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

value. To access the first element of array 'tab', we use tab[0]. To access the fourth element,
we use tab[3].

tab[5-3]<tab[tab[3]+1] < tab[2]«tab[0+1l] <« tab[2]«7

the table becomes
Indice 0 1 23 4 5 6 7
valeur |15 |7(70 (9]2|0]-3

Note: Accessing an element that doesn't exist (if the index is greater than or equal to the array

size or negative)will cause the program to terminate.

2.6 Reading an Array

To fill an array of N numbers, we use "read" N times like:

Algorithm C
Read (tab[0]) scanf ("%d", &tab[0]);
read (tab[l]) scanf ("%d", &tab[l]);
read (tab[N-11) scanf ("%d", &tab[N-1]);

However, we notice that the read instruction is repeated N times, iterating from 0 to N-1.

Therefore, the "for"loop can be used, with the counter playing the role of the index.

Algorithm C
for i<0 to N-1 do for(i = 0; i < N; i++){
write ("nb", i, "=") printf ("nb 5d =", 1i);
// Just to clarify // Just to clarify scanf("%d",
read (tab[i]) &tabl[i]):
end for }

The "read" instruction is to fill the table, and the "write" instruction is to show the user what is

required.

2.7 Displaying an Array

Like reading, "write" repeats.

Algorithm C
for i<0 to N-1 do for(i = 0; 1 < N; i++4){
write(tab[i]) printf ("%d\t", tab(i]):
end for }

2.8 Observations

- To visit all elements of an array, we generally use the "for" loop.

84

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

- The array size must be specified during programming (declaration), but we can give
the user the impression that the array size can be changed by declaring a large array and
using only part of it. We ask the user for the desired size, it must not exceed the actual array

size.

2.9 Example

Write a program that receives the averages of N students, where N is determined by the

user, then calculates the number of students who failed the subject (average less than 10).

Algorithm C
Algorithm nb adjourned; #include<stdio.h>
Const MAX=200; #define MAX 200
var avg|[MAX] :array of real; int main () {
i, aj, N : integer; float note[MAX] ;

begin int i, N, aj=0; // aj is nb of adjourned
do // retrieve number of students

write ("enter number of students (<", | do{

MAX, ")"); printf ("enter number of students

read (N); (<%d)",MAX) ;
while N>MAX scanf ("%d4d", &N) ;
for i<0 to N-1 do }while (N>MAX) ;

write ("mark ", i, "="): // Fill in the table

read (avgl[il); for(i = 0; i < N; i++){
end for; printf ("avg %d =", 1i);
aj «0; : scanf ("%d", ¬el[i]);

for i<0 to N-1 do

// calculate number of adjournments

if avg[i]<10 then f : .
. b1 for(i = 0; i < N; i++)
gl @i if(avg[i]l<10) aj++ ;
end 1f; // result display.
end for;

write ("the number of adjourned is ", aj);

end.

printf ("the number of adjourned is
ajl)i:
}

%d",

3. Multi-Dimensional Arrays

3.1 Definition

A two-dimensional array (also called a matrix) is essentially a simple array (one-dimensional)
whose elementsare themselves one-dimensional arrays. We see this in the illustration below,

a 1 2 3

The elements are accessible via two indices, the first specifying the row number and the
second specifying theelement number in that row (column).

This mechanism can be generalized to create matrices with more than two dimensions. We

85

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

can create an n- dimensional array, and accessing its elements requires n indices. The
arrangement of indices is crucial. The element M[3][2] (36) is different from the element

M[2][3] (28).

3.2 Representation
The matrix is represented in memory by a sequence of adjacent cells. A cell cannot be
removed or added to the matrix after its creation (static). The following figure represents a

matrix with 3 rows and 5 columns of real numbers.

Column Number

0 1 2 3 4
s 0[15] 7]-3]0] 9
T 16 |12] 4 [33]85
€ o[28(17|28(-52
€ 3[14[42]36]|49]-12

3.3 Declaration

Algorithm C

matrixName[Rows][Columns] : Array of elementType elementType matrixName [Rows][Columns] ;

The term "Array of" is a reserved word in the algorithm, used to indicate that the variable is
an array.

- 'matrixName': The identifier given to the matrix (variable name).

- 'Rows’: Number of rows.

- 'Columns’: Number of columns.

- ‘elementType': The type of elements. It can be any type, such as integer (‘int"), float
(‘float’), ...

The number of elements is the product of the number of rows and the number of columns.

Example
const R=100 const int R =100 , C=200 ;
const C=100 float M[R] [C] :
MI[R] [C] : Arrayofreal
matl[50] [30],mat2[30][20] : tableau d’entier int mat1[50][30],mat2[30][20];

86

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

3.4 Initialization
In C, the initial values of all matrix elements can be specified by specifying the elements of
each row between
“{" and "}, along with the matrix declaration. The values are separated by commas °,’,

and each row isseparated by a comma *,". All values must be of the same type.

Example:
int mat[][] = {{15, 7, -3 ,0 ,9},{6, 12, 4,33,85},{2, -8, 17 ,28,-52},{14, 42, 36, 49, -12}};

column number
0 1 2 3 4
15/ 7(-3]0| 9
6 | 12| 4 | 33| 85
-8 | 17| 28] -52
14142 36(49 | -12

Row Number
[T N I)
[\

Note: You can specify the number of rows and columns between the two brackets or leave

them empty to becalculated automatically.

3.5 Usage

To access a single element of the matrix, we use the matrix name with an index inside two
brackets ‘[and "] specifying the row number, and another index inside two brackets '[* and
'] specifying the column number. To access the element in the first row and first column of
matrix ‘mat’, we use ‘mat[0][0]".

Syntax
mat[line] [column]

example
mat[1] [3]¢mat[1][3]+2

the matrix becomes

Column number

0 1 2 3 4
. 0[15]7[3[0 9
T 106 [12]4[35]85
@ o3 |8 [17]28][52
% 3 1442|3649 -12

3.6 Reading a Matrix

87

Algorithms and Data Structure 1

Chapter 5: Arrays and Strings

To fill the matrix "M[Rows][Columns]’, we fill in "Rows’ rows. Since each row is a one-

dimensional arraywith *Columns’ elements.

Algorithm

C

for j«0 to C-1 do
read(M[0][3]);
end for;

for j«0 to C-1 do
read(M[1]1[31);
end for;

for j«0 to C-1 do
read (M[L-11[31);
end for;

for
scanf ("3sd",
for (=0

scanf ("%d",

scanf {"d",

(3=0 ;j<C ;j++)

FJ<C ;j++)

for (j=0 ;j<C ;j++)

&M[0][31):

&M[1][3]1):

&M[L-1][31);

However, we notice that the “for™ loop is repeated 'Rows’ times. In other words, it iterates

from 0 to 'Rows -1". Therefore, the outer for’ loop can be used.

Algorithme C
for i«0 to L -1 do for(i = 0; 1 < L; i++)
for j«0 to C-1 do for(j = 0; J < C; J+4){
read (M[1][§]) printf ("M[%d, %d] =", i,3):
end for scanf ("%d", &M[i][]]):
end for }

The 'read’ statement is used to fill the matrix, and the "write’ statement is used to explain to

the user what isrequired. The ‘for(j ...)" loop contains two "printf" statements to explain

and a ‘scanf” to enter values. The
“for(i ...)" loop contains only one “for(]
...)" loop statement.Explanation of

"write': Let's assume 'i=3"and 'j=5

write (["™™["[i[","[F]"1="|
screen ML 3 , 5 =
3.7 Displaying a Matrix
Similar to reading, the “write’ statement is repeated.
Algorithm C
for i«0 to L-1 do for(i = 0; i < L; i++){
for j«0 to C-1 do for(j = 0; J < C; j++)
write (M[11[31); printf ("sd\t", M[i][]j]);
end for; printf ("\n") ;
end for; }

The “for(j ...)" loop contains the "printf statement to print element "M[i][j]". The for(i ...)’

loop contains two “for(j ...)" loops for printing row '1°, and "printf("\n")" to move to the next

line at the end of each row "1" of thematrix.

Note: To visit all elements of the matrix, we use two “for’ loops.

88

Algorithms and Data Structure 1

Chapter 5: Arrays and Strings

3.8 Example

Write a program that reads hourly temperatures for 30 days as a matrix (30 by 24), then

displays them on thescreen. After that, display the highest temperature and when it was

recorded.

Algorithm

C

Algorithm temperatures
Const Dy =30 Hr=24
var T[Dy] [Hr] :array of real
maxT :real
i, j,maxDy,maxHr :integer
begin
for i«0 to Dy-1 do
for j<0 to Hr-1 do
write ':"T[".r i+1; ".r".r j.r lt:|:>ll)
read (T[i][3])
end for
end for
for i« 0 to Dy-1 do
for <0 to Hr-1 do
write (MELT[91)
end for
end for
maxT«T[0][0]
maxDy«0
maxHr«0
for i«0 to Dy-1 do
for j<0 to Hr-1 do
if (T[i][j]l>maxT) then

#include<stdio.h>
#define Dy30 // nb lignes
#define Hr 24 // nb colonnes
int main () {
float T[Dy] [Hr] ,maxT; // max température
int i, j, maxDy,maxHr;
// Fill in temperatures
for(i = 0; i < Dy; i+t++)
for(j = 0; j < Hr; j++){
printf ("T[%d, %d] =", i+1,3);
scanf ("%d", &T([i][]j]):
}
// display all temperatures
for(i = 0; 1 < Dy; i++){
for(j = 0; Jj < Hr; j++)
printf ("sd\t", M[i][]3]);
printE("\n™) ;
}
// search for maximum temperature
maxT=T[0] [0]:
maxDy =0 ;
maxHr=0 ;
for(i = 0; 1 < Dy; i+t+)
for(j = 0; j < Hr; j++)
if (T[i][]]>maxT) {

maxT«T[1][]]
maxDy<«i
maxHr<3j
end if
end for
end for
write ("the maximum temperature is

"

and was recorded on ", maxDy+l,

maxHr)
end

maxT=T[i][]J]:
maxDy =i;
maxHr=7;
}

// display of results

printf ("the maximum temperature is %d and
was recorded on %d at %d", maxT, maxDy
+1, maxHr) ;

The program takes the temperature matrix “Temperatures’ and outputs the highest

temperature recorded ‘'maxTemp’, the day it was recorded 'maxDay’, and the hour it was

recorded ‘'maxHour’. After filling the matrix and displaying it, we assume that the highest

temperature is in row 0 and hour 0. Then we go throughall elements of the matrix, and if we

find a temperature higher than the one stored in "'maxTemp’, ‘'maxTemp’ changes, and so do

‘maxDay’ and ‘'maxHour". In the end, we display the results on the screen, incrementing

‘'maxDay’ by 1 since rows start from 0 and days start from 1.

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

4. Strings

4.1 Definition

A string is an ordered set of characters, zero or more. They are always enclosed in double

quotation marks """ such as "computer”, "Good luck\n", "1", "3.14". In C, character arrays
are used to create strings. When you read a string from the keyboard, each character is
placed in a location, and when the characters are finished, the character "0' is added to the
end of the text to indicate its end. The character "\0' is called "null,"” with a code of 0. There

is a constant declared in the stdio.h library called NULL in uppercase.
#define NULL 0

Note: Since each character has a code, for example, the code of 'A’" is 65, the code of 'a' is
97, similarly, the character "\0' has a code which is 0.

NULL < ‘\0' <0

4.2 Declaration

In algorithms, we use the string, while in C, we use a character array. Suppose we have the

string “str’, whichcan contain a maximum of 30 characters, including "0'. It is declared as

follows:
var str : string char str[30] :
var str[30] :array of characters

4.3 Initialization

In the following example, we create a character array and initialize it with the word

"Welcome."

chat jgreeting[] = { "Wl Tely AN, ety ol Ymls el INON);

This statement creates an 8-character array (7 slots for the word "Welcome" and one slot
containing the character "0'). However, there is a simpler and faster way to create and
initialize a string:

char greeting[] = "Welcome";

This leads to the same result, which is creating an 8-character array, ending with the

character "0'.

01 23 4 5 6 7

greeting |[Wile |l |c|o|m|e|\O

The size of the array can also be specified:

char greeting[30] = "Welcome";

90

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

0 1234 5 6 71 8 . 28 29

greeting |W e |l [c|o|m|e |\

4.4 Assignment

Since strings are arrays, a string cannot be assigned to a variable directly after its
declaration. The following operation is incorrect:

char s1t[30];

£——="Helecome™s// error : assignment to an array.

1
S

To assign a string to a variable or copy one variable to another, we use the "strepy()’
function.

strepy(slt , "Welcome" };

4.5 Displaying Strings

The "%c" format can be used to display the string character by character until we reach the

"\0" symbol.
ie0 for (i=0 ;str[i] != '"A\0' ;i++)
while str[i] # '\0' do printf ("%c",str[i]) ;
write (str[il])
iei+1
end while

The string can also be displayed directly using the %s format.

write(str) printfi"ss" . 8E)

4.6 Reading Strings

The string can be directly entered using the "%s" format and without using "&" before the

string's name.

read(str} scanf ("%s",str) ;

To enter text containing spaces, in C, we use the | #include<string.h>
‘gets’ instruction, defined in the 'string.h’ library,

g ets(slt) ;
because ‘scanf” stops at the first space. d

4.7 Some String-Specific Functions

C supports a wide range of functions that deal with strings, which are defined in the

‘string.h” library. Someof them are:

strecpy (sl, s2); Copies string 's2" into string 's1".
strcat(sl, s2); Appends string 's2" at the end of string "s1°.
strlen(sl); Returns the length of string s1°.

91

Algorithms and Data Structure 1 Chapter 5: Arrays and Strings

stremp (sl, s52); Returns 0 if 's1” and "s2" are identical; lessthan 0 if "s1' < 's27;
greater than 0 if "s1” >
AR

4.8 Examples
Example 1:
An empty string str ="", which has a length of 0.
01 23 456 ... 28 29
str | \0

The contents of the slots don't matter after "\0", the string ends at the first \0". Thus, any string
can be convertedto an empty string by placing “str[0] ="0"".

Example 2:

A string containing a single character, it is different from the character type. So, ""w"" #

"

"'w'" because "w'"'is an array.

1 2 3 4 3 %6 ,,, 28 29

str | w [\O

Example 3:

Write a program that takes text, then converts uppercase letters to lowercase and

lowercase letters touppercase.

Algorithm C
algorithm inverse #include<stdio.h>
var txt :string[200] #include<string.h>
i : integer int main() {
begin char txt[200] ;
write(("enter text") int i ;
read (txt) printf ("enter a
ie0 text") ;gets(txt)
while txt[i]#'\0' do for(i=0 ;txt[i] !="\0" ;i++)
if txt[i]>='A’ and txt[i]<='Z’ then if (txt[i]>='Afg&etxt[i]<="2")
txt[i]=txt[i]4+’a’'-"A' txt[i]l+="a"-"A’
else else
if (txt[i]>»='a’ and txt[i]<="z’) then if (ext[i]>="a’&&txt[i]<="2z")
txt[il=txt[i]-(‘a’-"A"); txt[i]-="a’-'A’ ;
end if
end if printf (e, x4
end while return 0 ;
write (txt) }
end.

92

University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science
Department of Mathematics and Computer Science
Module: Algorithms and data structure 1
Promotion: 1st Year Math and CS Academic year: 2024-2025
Tutorial 06

Exercise 01:

Write an algorithm/program in C that fills an array T with n (5<n<=10) integers between 1 and
20. Then, it calculates and displays the sum, product, and arithmetic mean of the elements of
T

Exercise 02:

Write an algorithm/program in C that fills the T array with n letters (2<n=<20). Then it displays,
without redundancy, the elements of T.

Exercise 03:

Let T be an array containing N integers (10<N<50). We propose to write an algorithm/program
in C that allows T to be split into two arrays: TN (containing the negative elements of T) and
TP (containing the positive elements of T).

Exercise 04:

Let T be an array containing N integers (10=sN<50). We propose to write an algorithm/program
in C that allows the reverse of the elements of T (permute T[1] and T[n], then T[2] and T[n-
1]ss)i

Exercise 05:

Let T be an array containing N integers (10=N<50). We propose to write an algorithm/program
in C that allows grouping the even elements at the beginning and the odd elements at the end
of T without changing the order of entry of the even and odd values.

Exercise 06:

Let T be an array containing N integers (10<N<50). We propose writing an algorithm/program
in C that allows us to determine and display the maximum and minimum values of T.
Exercise 07:

Let T be a matrix containing N; M integers (N=10 and M=5). We propose writing an
algorithm/program in C that allows us to determine and display T's maximum and minimum

values.

93

Exercise 08:

Let T be a matrix containing N; M integers (N=10 and M=5). We propose to write an algorithm
/ a program in C that allows us to determine and display the sum of all the elements of T.
Exercise 09:

Write an algorithm / a program in C that allows you to enter a square matrix, and then it searches

and displays its transpose.

94

Algorithms and data structures 1 Chapter 6: Custom Types

Chapter 6 Custom Types

1. Introduction

In algorithms, in addition to predefined types (integer, real, Boolean, character, strings,

and arrays), userscan define new types (custom types).
In our course, we are primarily interested in types such as enumeration and record.
2. Enumerations: (Enumerated Type)

- An enumerated type, as the name suggests, allows for the exhaustive definition of

possible values.

- An enumerated type is defined by an identifier name and a range of values.

- Any enumerated type must be declared (defined) before its use.
2.1 Declaration:

Type NewType enum = (Valuel, Value2, Value3, ...)

Example:
Type
Day enum = (Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday) Month
enum = (January, February, March, April, May, June, July, August, September,
October, November, December)
Variable
J1,J2: Day;
M: Month;
// Variables J1 and J2 can only take one of the values: Saturdays, ..., Friday.
/I Variable M can only take one of the values: January, ..., December.
Note:
- Constants in an enumeration are related by an order defined by the
position of values in theenumeration. Thus, the order in which identifiers
are listed is significant.
Example: Saturday < Monday and December > January.
- Names assigned to different constants (values) in an enumeration cannot be reused.
Example: Saturday: integer ; // error
2.2 Operations:
Functions defined on enumerated types include:

- Ord(x)": This function returns a positive integer corresponding to the rank of x in the list.

95

Algorithms and data structures 1 Chapter 6: Custom Types

- Succ(x)': This function provides the constant immediately following the value of x in the
enumeration.
The successor of the last value is not defined.
- Pred(x)": This function provides the constant immediately preceding the value of x in the
enumeration.
The predecessor of the first value is not defined.
Example:
Ord(Saturday) = 1, Ord(Sunday) = 2, ..., Ord(Friday) = 7.
Succ(Saturday) = Sunday, Succ(Sunday) = Monday, ..., Succ(Friday) = ?
(not defined). Pred(Friday) = Thursday, Pred(Thursday) = Wednesday, ...,
Pred(Saturday) = ? (not defined).
3. Structure type (or record)

Issues : we want to safeguard students' averages :
For each student we need to store :

* The name (string)

* First name (string)

* The average (real)

Solution: We have to use a customised type of data! We define a new type and call it student

containing:
= the name (string)
= First name (string) . i P
* The average (real) Student : namel first name1 12,45

string string real
3.1 Definition

- A record (or structure) is a type used to store several items of data, of the same or
different types.
- A record is made up of components called fields, each of which corresponds to a piece
of data.
3.2 Declaration of a Record: Type
Structure RecordTypeName
Fieldl: Typel;
Field2: Type2;

96

Algorithms and data structures 1 Chapter 6: Custom Types

Fieldn: Type n;

EndStructure;

The keyword "Type" is common to all new types that one wants to add to the compiler.
The keyword "Structure” indicates the beginning of the definition of a structure.
"RecordTypeName" is the name of the new type.

The keyword "EndStructure" indicates the end of the record.

Example: Suppose that we want to write a program that manipulates information about

students, includingthe name, first name, card number, phone number, and the 4 grades for

each student.

The following declarations are necessary for this manipulation:

Type

Structure Studentldentity

Name: String;

FirstName: String;

EndStructure;

Structure Student

CardNumber: Integer;

Identity: Studentldentity;

PhoneNumber: String;
Grades[4]: Array of Real;

EndStructure;

/variables

studentl, student2, student3 : Student;

The three variables studentl, student2, and student3 are of type Student, so each of these

three variables hasthe following structure:

97

Algorithms and data structures 1

Chapter 6: Custom Types

Student :
name firstname Card_number tel notel note2 note3 noted

first namel [um1

077612 12,5 | 15 8,5

string string
3.3 Handling records

a) Accessing fields in a record

integer

integer real real real real

Access to a field is done by specifying the name of the record type variable followed by

the field identifierseparated by a dot (.):

Example :

Type

Structure date
day: integer;
month: integer:
year: integer;

End Structure ;

Variables
D1,D2: date;

b) Reading and writing records

D1 day month vyear
o - &
D1.day=9 i s i
D1. month =3 8 3 1995
D1. year = 1995 integer integer integer
day month year
D2 o o .
D2. day = 2 2 11 1999
D2. months =11 integer integer integer

D2. year = 1999

By analogy with arrays, the fields of a structure are read or displayed one by one,

because only the simpletypes defined by the compiler can be read or displayed.

Example : reading information from a student

Studl : student ; // Variable
Write('Please enter the card number:') ;
Read (Studl.Card_number) ;
Write('Please enter the name:') ;

Read (Studl.ident.Name) ;
Write('Please enter the first name:") ;

Read (Studl.ident.Firstname) ;

Write('Please give the Telephone Number:') ;

Read (Studl.Tel) ;

Fori=1to 4 (step=1) do
Ecrire(‘please enter the note N° ', i) ;
Read(Stud1.Note[i]);

98

Algorithms and data structures 1 Chapter 6: Custom Types

End For

Write('Please give date of birth day month year') ;
Read(Studl. date birth.day);

Read(Stud1. date birth.month);

Read(Studl. date_birth.year);

Writing:
- To display the variable "stud1" from the previous example, the procedure is as follows:
write (Studl.Card _number) ;
write (Studl.ident.Name) ;
write (Studl.ident.Firstname) ;
write (Stud1.Tel) ;
Fori=1to 4 (step=1) do
Write (Stud1.Note[1]);
End For
Write (Stud1. date_birth.day);
Write (Stud1. date birth.month);
Write (Stud1. date birth.year);
Notes :
e Unlike arrays, there is no possibility of using a loop to manipulate all the elements of
a record.
e In practice, the number of fields is very limited (5 to 20 fields).
e A record can be the subject of an assignment (with a variable of the same type):
e Stud2 = stud1; /* This means that all the fields of studl are copied to the
e corresponding fields of stud2 */
3.4 Arrays of Records:
It is possible to declare an array whose elements are of record type.
Thus, we first define the structure, and then declare the existence of an array whose
elements are of thistype.
Type
Structure name_Typerecord
variablel : typel;
variable2 : type2;

variablen : type n;

99

Algorithms and data structures 1 Chapter 6: Custom Types

EndStructure
Name-Array[size] : Array of name-Typerecord ;
To select the third field of the fifth element of the array, the syntax is used as follows:
Name-array[5].variable3.
¢ Reading:
read (Tab[2].Name);
Tab[4].moyenne « 10.5;
® writing
write (Tab[2].Name);
e Comparison:

if (Tab[2].moyenne < 10) then

100

University of Adrar
Faculty of Material Sciences, Mathematics and Computer Science
Department of Mathematics and Computer Science
Module: Algorithms and data structure 1
Promotion: 1st Year Math and CS Academic year: 2024-2025
Tutorial 07

Exercise 01:

Write a C program that defines a point structure containing the two coordinates of a point on
the plane. Then, it reads two points and displays the distance between them. The distance

between two points (x1,y1) and (x2,y2) is:

Distance = .\/(:1:2 — 1:1)2 + (y2 — yl)2

Exercise 02:

Write a C program that defines a student structure where a student is represented by their first
name, last name, and grade. Then, it reads a list of students entered by the user and displays the
names of all students with a grade greater than or equal to 10 out of 20.

Exercise 03:

Complete the C code below to construct a deck of 32 cards. The deck is represented by an array
of 32 distinct elements, each type of Card.

#include<stdio.h>

#include<stdlib.h>

enum Couleur {trefle,carreau , pique, coeur};

enum Face {sept , huit , neuf , dix , valet , dame, roi , as};
struct Carte

{

Couleur couleur;
Face face ;

}s

int main()

1
Carte jeu [32] :

S/ Code pour construire le jeu

101

Exercise 04:

Write a C program that reads a set of people of different ages into an array of structures and
then deletes all those who are twenty years old and older.

Exercise 05:

Create a union that stores an array of 21 characters and six integers (6 since 21 / 4 = =5, but
5*4 == 20, so you need 1 more for this exercise), and set the integers to the 6 given values, then

display the array of characters as both a series of characters and a string.

102

10.

Ll

12.

13,

15.
16.

References

Claude Pair, Marie-Claude Gaudel, Les Structures de données et leur représentation
en mémoire, édition Iria, 1979,

Damien Berthet et Vincent Labatut. Algorithmique & programmation en langage C -
vol.1: Supports de cours. Licence. Algorithmique et Programmation, Istanbul,
Turquie. 2014.

D.M. Ritchie and B.W. Kernighan. The C programming language. Prentice Hall Inc.,
Englewood clis, New Jersey, Mars 1978.

Jacques Courtin, Initiation a l'algorithmique et aux structures de données, Edition
DUNOD, 1998.

Mc Belaid, Algorithmique et Structures de données, Edition les pages bleus, Edition
Mai 2008.

Mc Belaid, Initiation a I’algorithmique, Edition les pages bleus, Edition 2012.

Michel Divay, Algorithmes et structures de données génériques - 2éme édition,
Edition Dunod

https://elearning.univ-msila.dz/moodle/course/view.php?id=10217 &lang=fr

Thabet Slimani, Programmation et structures de données avancées en langage C,
cours et exercices corrigés, 2014.

Thomas H. Cormen, Algorithmes Notions de base Collection : Sciences Sup, Dunod,
2013.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest Algorithmique - 3¢me
édition - Cours avec 957 exercices et 158 problémes Broché, Dunod, 2010.

Zegour Djamel eddine, Structures de données et de fichiers. Programmation Pascal et
C, édition CHIHAB.

Paul J. Deitel and Harvey Deitel, C++ How to Program (10th Edition). Pearson
Education, 2016.

Bjarne Stroustrup, C++ Programming Language, Addison-Wesley Professional,
2013.

https://cplusplus.com/doc/tutorial/

https://en.wikiversity.org/wiki/C%2B%2B/Introduction

103

