University of Ahmed DRAIA -ADRAR-

Department of Mathematics and Computer Science

A project presented for the

Master's degree in Computer Science

Converting Dialectal Arabic to Modern Standard Arabic

Elwannas HIRI

Supervised By

Mr. Mohamed Amine CHERAGUI

الجمهورية الجزائرية الديمقراطية الشعبية République algérienne populaire et démocratique

وزارة التعليم العالي والبحث العلمي

Ministère de l'enseignement supérieur et de la recherche scientifique

UNIVERSITE AHMED DRAYA - ADRAR BIBLIOTHÈQUE CENTRALE Service de recherche bibliographique

جامعة احمد دراية ادرار المكتبــــة المركـــزية m litter . sult . مصلحة البحث الببليوغرافي الرقم م م ام .ب .ب /ج.أ/2021

N°.....B.C/S.R.B//U.A/2021

شهادة الترخيص بالإيداع انا الأستاذ(ة): will as a sal i and المشرف مذكرة الماستر. Converting Dialect ARABIC TO :-:-: Modern Standar & ARABIC من إنجاز الطالب (٢): الريا في هدي و الطالب(ة): كلية: الحلوم والتكرو لوحيا القسم : SRI - ic all - - Lie Lui التخص : ٢ - ﴿ مِحْ التَّخْصُ : تاريخ تقييم / مناقشة: 2021/06/26 أشهد أن الطلبة قد قاموا بالتعديلات والتصحيحات المطلوبة من طرف لجنة التقييم / المناقشة، وإن المطابقة بين النسخة الورقية والإلكترونية استوفت جميع شروطها. وبإمكانهم إيداع النسخ الورقية (02) والاليكترونية (PDF).

- امضاء المشرف: شراقی محمد آمین

ادرار في مساعد رئيس القسم: مساعد رئيس قسم الرياضيات والإعلام الآلي مساعد رئيس قسم الرياضيات والإعلام الآلي معلف بالمنصل والتعليم في التسرح معلق والإعلام الآلي

ملاحظة : لاتقبل أي شهادة بدون التوقيع والمصادقة.

Abstract

The field of studying the arabic dialects has attracted a lot of researchers recently, with regards to the importance of this area in many domains of the time and the rising demand for this kind of needs. In this project we present our AMSAC corpus (Algerian dialect Modern Standard Arabic Corpora), a collection of more than 14k sentences, the largest corpus for Algerian dialect to our knowledge. We also present our model LAHDJA, a translation model for the Algerian dialect to the MSA. LAHDJA has achieved the best results compared to the Meftouhe model with a 15.13 BLUE score.

Key words: Dialect, translation model, corpus

الملخص

استقطب مجال دراسة اللّهجات العربيّة الكثير من الباحثين في الآونة الأخيرة، لما له من أهميّة في العديد من مجالات العصر وكذا الطّلب المتزايد على هذا النّوع من الاحتياجات. في هذا المشروع، نقدّم مدوّنة الجمل أمساك، وهي مدوّنة لأكثر من 14 ألف جملة، والتي تعتبر أكبر مدوّنة جمل للّهجة الجزائرية على حد علمنا. نقدّم أيضًا نموذجنا لهجة، وهو تموذج ترجمة للّغة الجزائرية إلى اللُّغَةِ العَرَبِيَّة الفُصحَى. حقّق لهجة أفضل النّتائج مقارنة بنموذج مفتوح بنتيجة: 15.13

الكلمات المفتاحيّة: نموذج ترجمة، لهجة

Dedication

To my parents, to my brother Abbes and his little man Hude, to my sister Assia, to my sister Nawel and everyone who contributed to this work. I dedicated this work.

Elwannas

Acknowledgements

All the Thank and the Respect to our Supervisor Mr. Mohamed Amine CHERAGUI for Guiding us in every step of this project. A very special thanks to Dr. Mohammed MEDIANI and Dr. Abdelghani DAHOU which they helped me during all steps in my thesis. To anyone interested in studying the Arabic language. Thanks to the Algerian community generally and 1001Night-Tech specially, namely Romaissa NEDDJAR. To all my friends which they are my team namely Mohammed Cherif ABBOU, Amine ABDEDAIM, Shaimaa BENAICHAOUI, Yassine BEN-LARIA, Adel DAFI, Wassen ELDJANABI, Salem GUERROUT, Dounia KHECHAB, Youness NASSAMOU and Molay Ali YOUSFAT thank you for supporting me until last seconds.

Elwannas

Contents

1	Intr	roduction to Machine Translation	2
	1.1	Machine Translation History	2
	1.2	Machine Translation Approaches	3
		1.2.1 Rule Based (Visual view of concept & approach)	4
		1.2.2 Data-driven (Visual view of concept & approach)	5
		1.2.3 Hybrid MT (Visual view of concept & approach)	6
	1.3	Challenges for Arabic Machine Translation	7
2	Tra	nslation from Arabic Dialect to MSA (State of the Art)	8
	2.1	Introduction	8
	2.2	The difference between the Arabic dialect and MSA	8
	2.3	Importance of translating Dialect Arabic to Modern Standard Arabic	9
	2.4	Machine Translation Models(Related works, previous models)	11
	2.5	Corpora	12
	2.6	Conclusion	13
3	Con	nception of Translation Model "LAHDJA"	14
	3.1	Introduction	14
	3.2	General Architecture	15
	3.3	Building of AMSAC	15
		3.3.1 Data source	15
		3.3.2 Process of building AMSAC	17
		3.3.3 Files received by regions	18
	3.4	AMSAC discussion	19
		3.4.1 Algerian Dialect Study	19
		3.4.2 Word variation	20
	3.5	Statistics	20
		3.5.1 Before Normalization	21
		3.5.2 Normalization	21
	3.6	Methodology	22
		3.6.1 Transformers Architecture	22
		3.6.2 The translators analogy	23
4			
-	Imr	plementation and Results	27
	Imp 4.1	Dementation and Results Introduction	27 27
	Imp 4.1 4.2	Dementation and Results Introduction Used tools	27 27 27
	Imp 4.1 4.2 4.3	Dementation and Results Introduction Used tools AMSAC	27 27 27 28
	Imp 4.1 4.2 4.3 4.4	Dementation and Results Introduction Used tools AMSAC Experiments	 27 27 27 28 28

4.5	Final Tests	30
4.6	Our Application	31
4.7	Conclusion	32

List of Figures

1.1	Rule Based (Visual view of concept & approach)	4
1.2	Data Driven(Visual view of concept & approach)	5
1.3	Hybrid Machine Translation (Visual view of concept & approach) $\ldots \ldots \ldots$	6
3.1	General Architecture of AMSAC + LAHDJA	15
3.2	Tatoeba process, visual explanation	16
3.3	Twitter process, visual explanation	16
3.4	Youtube process, visual explanation	17
3.5	Regions	18
3.6	Number of files received per region	18
3.7	Attention	25
3.8	Transformers Architecture	26
4.1	LAHDJA GUI	31
4.2	LAHDJA GUI	31

List of Tables

1.1	Machine Translation History	2
1.2	Machine Translation Approaches	3
1.3	Challenges for Arabic Machine Translation	7
2.1	Differences between the Arabic dialect and MSA	9
2.2	Most applications used in Algeria, Tunisia and UAE	10
2.3	Previous work on AD - MSA Machine Translation	11
2.4	PADIC Corpus Statistics	12
2.5	Dial2MSA Statistics	12
2.6	MADAR Corpus Statistics	13
3.1	Characteristics of Algerian Dialect	20
3.2	Example of word variations	20
3.3	Statistics before normalization	21
3.4	Changes applied to AMSAC in order to reduce vocabulary size	21
4.1	System and Tools	27
4.2	Statistics after normalization	28
4.3	Used parameters in Fairseq	29
4.4	Impact of number of layers on Blue score results (with bpe "BLEU" and without	
	bpe "BnT")	29

Abbreviations

BnT BLEU score without tokenization	n
DA Dialectal Arabic	
EGY Egypt	
GLF Gulf	
LEV Levantine	
LSTM Long short term memory	
MSA Modern Standart Arabic	
NLP Natural language processing	
NPS Number of parallel sentences	
NSPT Number of sentences per test	
NTRS Number of training sentences	
NTS Number of test sentences	
NVS Number of validation sentences	
OSV Object Subject Verb	
OVS Object Verb Subject	
PPL Perplexity	
SOV Subject Object Verb	
SVO Subject Verb Object	
TD Thusian Dialect	
UAE United Arabic Emerat	
VOS Verb Object Subject	
VSO Verb Subject Object	

Introduction

The natural language processing is a research field situated at the intersection of several disciplines: Artificial Intelligence, Theoretical Computer, Statistical, Linguistics, ... etc. Its main objective is the design and the development of software able to automatically process linguistic data, i.e. data expressed in a natural language (whether Standard or Dialect). In recent decades, natural language processing has seen a real ascension, which has allowed us to move out of the standard language ("academic and well-structured language") to the dialect, which remains a heterogeneous version of the standard language closer to humans. Scientifically and also socio-economically, several specialized companies and products have been created. Today, we speak of automatic spelling correction, automatic summarizing, natural language database interrogation, sentiment analysis, etc. But the main topic of this field remains Machine Translation. If in the past, having a text translated by a machine was utopian, the technological developments and the constant efforts of many researchers in Machine Translation (MT) make it possible today. MT is the process of translating a text from a source language to a target language by a machine without any human intervention. For machine translation from or to Arabic, a lot of work has been done, but in terms of performance they are still a fair way behind other languages such as English or French. The objective of our project is to contribute to the development of the Arabic language processing by developing an environment for the machine translation from the Algerian dialect to the standard Arabic language using the deep learning approach. This project also allows us, in addition to our translation system "LAHDJA", to build an important linguistic resource, which is the corpus "AMSAC". In order to achieve our objective, we have structured our thesis in 04 chapters, which are:

- Introduction to Machine Translation
- Challenges for Arabic Machine translation
- The conception of our translation model "LAHDJA"
- Implementation and results

Chapter 1

Introduction to Machine Translation

1.1 Machine Translation History

The table below shows a brief history about MT [3], [5], [6], [7], [9], [11], [13], [14], [15], [18], [26].

Generation	Period	Name	Updates {Events, Changes}					
			- Warren Weaver ¹ suggested in his letter to use computer					
1	1049 1060	The begining	for translation					
L	1946 - 1900	r në beginnig	- Yehoshua Bar-Hillel ² , created a translator at IBM which					
			translates more than 60 sentences. He predicted than MT					
			would not be an issue in 3-5 years.					
			- Victor Yngve ³ , the first, in 1954, brought out the first who					
			dealt with MT.					
			- Earlier in 1960s, parsing and disilluionment was the only					
			field of reseach in MT.					
2	1960 - 1966	Parsing and	- Computational linguistique born, thanks to David G. Hays ⁴					
2	1500 - 1500	disillusionment	- First international conference for MT.					
			- In 1964, $ALPAC^5$ Studies the chance of MT.					
			- ALPAC declared that MT is waste of time considering					
			time consuming.					
			- 1970 Start of the project REVERSO by a group of Russian					
3	1966 - 1980	New birth	researchers.					
0	1500 1500	and hope	- Creation of WEATHER system by Alai Colmerauer					
			- 1978 Creation of ATLAS ⁶ by $FUJITSU^7$ for Korean-					
			Japanese translation.					
			- In 1983, NEC^8 creates a translation method based					
4	1980 - 1990	Japanese	on an algorithm called PIVOT.					
T	1000 1000	invaders	- A rule-based system called PENSEE from OKI ⁹ was					
			released in 1986.					
			- Based on rules, Hitachi ¹⁰ created its own translation system.					
		Web and new	- In 1993, The theme of C-STAR ¹¹ project was MT.					
5	1990 - now	vague of	- 2005, Translation websites come out.					
		translators	- 2010 28% of intenet users used MT. 50% planned to do.					

 Table 1.1:
 Machine Translation History

1.2 Machine Translation Approaches

Since the first MT system, NLP researchers generally and MT Scientist specifically developed different approaches to automate the translation. Deep Neural Networks architectures were changing for image recognition [8] and speech recognition[10]. [28] MTs, benefit from the existed data and boost the performance. It costs less time and money comparing to Rule-based or SMT systems. The table below present MT approaches[7].

	Paradigms	Concept	Approaches			
	Rule-based	Based on language theory. Language experts	- Direct Translation,			
1	Machine Translation	spend time to extract rules for a specific language in order	- Transfer Based			
	Figure (1.2)	to create system to generate target language translation	- Interlingua			
	Data drivon	Based on examples learn from existed sentences	-Statistical Machine			
2	Machino Translation	to generate new states	Translation			
2	Figure (1.2)	to generate new states	- Neural Machine			
	rigure (1.5)		Translation[28]			
			Example-based			
			Machine Translation			
	Hybrid Machine	Hybrid machine translation is a single-based	Bule-based Approach +			
3	Translation	framework that incorporates many machine	Data-driven approach			
	Translation	translation strategies.	Data-uriven approach			

 Table 1.2:
 Machine Translation Approaches

 $^1\mathrm{Warren}$ Weaver was a US scientist, a mathematician and an administrator of science (July 17, 1894 – November 24, 1978

²Yehoshua Bar-Hillel was a mathematician, philosopher, and linguist from Israel. He was a forerunner in machine translation and formal linguistics. (https://tinyurl.com/t1g3r01-PFE-YehoshuaBarHillel)

³Victor Y. was a professor of linguistics at the University of Chicago (1925–2012). He was an early adopter of computer linguistics and natural language processing. (https://tinyurl.com/t1g3r01-PFE-Victor-Yngve)

⁴David Glenn Hays (November 27, 1928 – July 26,1995), was a computational linguist and social scientist known for early work in machine translation(https://tinyurl.com/t1g3r01-PFE-David-G-Hays)

⁵Automatic Language Processing Advisory Committee

 $^6\mathrm{Current}$ version is 14

 $^7{\rm Fujitsu}$ Limited is a Japanese multinational information and communications technology https://tinyurl.com/t1g3r01-PFE-FUJITSU

⁸NEC Corporation is a Japanese IT and electronics multinational company based in Minato, Tokyo. (https://tinyurl.com/t1g3r01-PFE-NEC)

⁹Founded in 1881 OKI Electric Industry Co, is a Japanese manufacturer of telecommunications

 $^{10}{\rm Hitachi:}$ is a Japanese multinational conglomerate company head quartered in Chiyoda, Tokyo, Japan. https://tinyurl.com/t1g3r01-PFE-HITACHI

¹¹Consortium for Speech Translation Advanced Research

Figure 1.1: Rule Based (Visual view of concept & approach)

Figure 1.2: Data Driven(Visual view of concept & approach)

1.2.3 Hybrid MT (Visual view of concept & approach)

Figure 1.3: Hybrid Machine Translation (Visual view of concept & approach)

1.3 Challenges for Arabic Machine Translation

The Arabic language has more than 12,000,000 words¹², which is a huge number compared to other languages like English 600,000 words and French 150,000 words. Arabic differs in many variations. Starting from letters, Arabic has 29 letters. Furthermore, "ف" (dhad), "ف" (tha'a) and "ė" (ghain) are special letters. The structure of the Arabic sentence is flexible. 120 Arabic pattern morphology exist[24]. Unlike other languages, the Arabic language has many challenges in the NLP domain generally and Machine Translation precisely. The table below present Arabic Machine Translation challenges [1].

	Challenge	Problem	Example	Translated Example		
		With diacritization, vocabulary	v	vord کتب		
		the size will expose which	كَتَبَ	He wrote		
		will cause time, coast, performance problems for MT.	ڬؿؙڹ	Books		
1	diacritization	Without diacritization,	كُتِبَ	It is written		
		the vocab size will be reduced	Senter	کتب الدرس nces		
		but cause a problem which	کُتِبَ الدَّرْسُ	Written lesson		
		is a limited context.	كَتَبَ الدَّرْسَ	He wrote the lesson		
2	Word	A word which has	11.5	Empty,		
2	ambiguity	multiple meanings	حال	battalion, imagined		
	Letter	Λ letter that connected to a word	بالقلم	Using a pen		
3	ambiguity	which has multiple meanings	بالسيارة	By the car		
	amonguity	which has multiple meanings	بالباب	At the door		
			ويتكلمون	And they are talking		
4	Agglutination	A complex word which can	و	And		
	word	represent a sentence	ي	Are		
	word		تكلم	Talking		
		ation A complex word which can 1 represent a sentence	ون	They		
			في	In		
	Diagrams	"Words" are not considered	على	On		
5	and	as words in Arabic language	من	From		
	trigrams		إلى	То		
			عن	About		
		Flexible sentence syntax	Mohame	d went to school		
6	Sentence	VSO^{13}	ذهب محمد الى المدرسة	Went Mohammed to school		
	syntax	SVO ¹⁴	محمد ذهب الى المدرسة	Mohamed went to school		
		OVS^{15} (less used)	الى المدرسة ذهب محمد	To school went Mohamed		

Table 1.3: Challenges for Arabic Machine Translation

¹²https://tinyurl.com/t1g3r01-PFE-Arabic-wn
¹³Verb Subject Object
¹⁴SVO: Subject Verb Object
¹⁵OVS: Object Verb Subject

Chapter 2

Translation from Arabic Dialect to MSA (State of the Art)

2.1 Introduction

Typically, the Arabic is the official language of the Arab world used in the official domains. But for daily communication and non official talks, the non-standard language (dialect) is used. In fact, being the dialect that is primarily used, involves a wide interest in this area in the NLP domain. In this chapter, we will present a brief review about Translation from Arabic dialect to MSA including The Difference between the Arabic dialect and MSA, why is this kind of translation important? And some previous works in this domain.

2.2 The difference between the Arabic dialect and MSA

Generally, the modern standard Arabic is the official language overall of the Arabic countries, it is used in the newspapers, official talks..etc, it is a modern version of the classical Arabic (CA) that used in the Quran and in the earliest literature, it has a linguistic rules and a typographic system of writing and it is standard in all Arabic countries. In parallel, the primary language used in daily talks and social networks is the Arabic dialect (non-standard form Arabic), each country has a specific dialect language, and sometimes there are more than one dialect in the same country. These dialects are usually spoken rather than being written, and they are a mix of other languages such as Berber, English, French. In dialect languages there are no set standards for writing them. Because there are no writing norms to adhere to, so it can be written with different forms that are all valid. In the table 2.1 below, we present a brief difference between the MSA and the dialect language.[16, 12]

Features	MSA	Dialect
The use	News paper, formal broadcast programs, religious practice	Daily talks , non-official talks
Originality	Modern version of the classical Arabic	A mixed ancient local tongues and by European languages such as French, English
Flexibility	Standard in all the Arabic countries	Each country has its own dialect, and sometimes there is more than one dialect in the same country
Grammar	Linguistic rules and a typo- graphic system of writing	No rule based and usually spoken
Vowels	Sensitive to the case ending (for example in the plural forms)	There is no case ending
Syntactic level	The Verb-Subject-Object order (VSO) and (SVO) are more used then (OVS) and (OSV)	Free word order
Other characteristics	A complex morphology and a rich vocabulary	Many forms are all acceptable since there are no writing rules as reference
Other characteristics	Msa orthography contains only Abjd-alphabetic	Some letters can be replaced by numbers. Ex: 3 replace the letter " ε "

Table 2.1: Differences between the Arabic dialect and MSA

2.3 Importance of translating Dialect Arabic to Modern Standard Arabic

Several systems have been developed for the MSA translation because the NLP is more likely to focus on the standard form of any language. In parallel, dialect translations were understudied at the time. It's just recently that it has attracted researchers due to the rising demand for them.

In adding, This sort of translation technology can be used in different domains and many purposes, such as commercial purposes. (multipurpose)

Furthermore, The fact that Arab people are more likely to use the non-standard language in dealing with the internet and social networks which are increasingly used. As shown in the table 2.2 1 , the most rated apps and used in Algeria, Tunisia and UAE are social media applications such as Messenger, Facebook, Instagram ...etc , the thing that provides a huge amount of available data that can be exploited by the researchers while developing systems in the NLP domain. (availability)

Dealing with the standard form of any language provides more flexibility and control of the context. As a result, dialect translation is critical at this time. (control)

Moreover, The field of sociology and context categorization can benefit by translating dialect materials to the standard form. So it's easy to study society's ideas and problems by using their social network's expressions. (classification) [16, 12]

¹https://www.similarweb.com/ [Last view 5/06/2021]

Algeria		Tunisia		UAE	
Android	Apple	Android	Apple	Android	Apple
Shaareit	Messnger	Messenger	Messenger	Photography	Photo Video
SuperNet VPN	Facebook	Snapseed	Facebook	ALHOSN UAE	CapCut
Phoneix	Instagram	WhatsApp	Instagram	COVID19 UAE	ALHOSN UAE
Facebook lite	TikTok	SuperNet VPN	TikTok	SEHA	COVID-19 UAE
Tiktok	YouTube	Instagram	YouTube	DHA	DHA
Whatsapp	CapCut	Water Color Sort	CapCut	Catwalk Beauty	TikTok
Instagram	Crowd Battle 3D	Facebook Lite	Crowd Battle 3D	BOTIM 1	ToonMe
Kwal	Google Maps	TikTok	Google Maps	Super VPN	Instagram
Messnger	Snapchat	Catwalk Beauty	Snapchat	TikTok	BOTIM
Cat Walk beauty	Truecaller	Alibaba.com	Truecaller	Instagram	Telegram Messenger
	Table 2.2:	Most applications us	ed in Algeria, Tuni	sia and UAE	

UA
and
Tunisia
Algeria,
in
used
applications
Most
2.2:
Table

Results (Bleu Scoring)	14.05	17.79	11.21	14.34	12.29	14.32	$15.10 \ / \ 14.64$	$14.44 \ / \ 13.95$	$13.55 \;/\; 13.05$	$12.54 \ / \ 11.72$	15.1	14.44	13.55	12.54	0.17	0.41	0.16	0.3	55.22
Corpora			DE* 00*2	60- 00		_		PADIC -				PADIC				MPCA + + PADIC			/
NSPT	/	/	/	/	/	50		500				500				2000			100
Source - Target	LEV-EGY	LEV-EGY	EGY - LEV	MSA - EGY	MSA - LEV	TD - MSA	ALG - MSA	ANB - MSA	MSA - ALG	MSA - ANB	ALG - MSA	ANB - MSA	MSA - ALG	MSA - ANB	LA - MSA	LA - MSA	MA - MSA	MA - MSA	TD - MSA
Additional Technics	/	/	/	/		/		17.N /11/D			/		/	/		B: I CTM			/
Approach			MTurk			Rule-based		Phrase	based			Phrase	based		Single	$MTLA^3$	Single	MTLA	Rule-based
Paradigm			Data Driven			Data Driven		Doto Duinon	Data DIIVEII			Doto Duiton	Data DIIVEII			Mound MT	T TAT TOTTOT		Data Driven
Group			zbib [27]			Sadat [22]	Meftoh 15 [16]			Meftoh 18 [17]				Baniata [2]				Sghaier [23]	
Year		1	2012		1	2014		901E	0107	1		9018	0107	1		2018	0107	1	2020
Z	-	2	က	4	ഹ	9	2	∞	6	10	11	12	13	14	15	16	17	18	19

models
previous
works,
Related
Models(
Translation
Machine
2.4

Table 2.3: Previous work on AD - MSA Machine Translation

² https://catalog.ldc.upenn.edu/
 ³ Multi task Learning Approach

2.5 Corpora

The tables below resume all the statistics of previous works PADIC[16](2.4), MADAR[4](2.6), Dial2MSA[19](2.5) and

• PADIC

Corpora	Creation Group	N.Dialects	NPS	Dialect	Words	Vocab
				ALG	38707	8966
				ANB	38428	9060
PADIC	TORJOMAN	5	6400	TUN	37259	10215
				SYR	39286	9825
				MSA	40906	9131
				PAL	39286	9195

Table	2.4:	PADIC	Corpus	Statistics
-------	------	-------	--------	------------

• Dial2MSA

	ISA Crowdsourcing		5500	EGY	77800	17399
Dial2MSA		1	5000	MGR	53351	18856
		4	6000	LEV	/	/
			0000	GLF	/	/

Table 2.5: Dial2MSA Statistics

• MADAR

Corpora	Creation Group	N.Dialects	NPS	Dialect	Words	Vocab
				BEI	67216	28457
				CAR	74517	27731
			12000	DOH	63663	26054
			12000	MSA	129994	25096
				RBT	202114	32654
				TUN	65848	28923
				ALP	10580	6283
			ALE ALE AMM ASW BGH BNG	ALE	11671	6184
				ALG	11643	6250
			2000	AMM	11746	6370
				ASW	11999	6442
		26		BGH	10772	6503
MADAR	CAMeL			BNG	11568	6216
MADAI				BSR	10308	6382
				DMS	10637	6288
			2000	FES	11691	6623
			12000 DOH MSA RBT TUN ALP ALE ALG AMM ASW BGH BNG BSR DMS FES JDD JRS KHR MSL MSL MSC RYD SLT SAN SFX TRP	JDD	10582	6150
				10997	6096	
				KHR	11809	6297
				MSL	11250	6540
				MSC	11653	6606
				RYD	11103	6252
				SLT	12491	5945
				SAN	17272	6397
				SFX	10640	6105
				TRP	11538	6164

Table 2.6: MADAR Corpus Statistics

2.6 Conclusion

Recently, translation from Arabic dialect to MSA has attracted a lot of developers and started to be studied, starting from the Middle-east dialects to the Maghreb dialects. In this chapter we have presented a review about the difference between the dialect language and the MSA, we have also discussed the importance of this kind of study in the multi purpose such as commercial and social studies and finally a brief of previous works and models related to this area of domain.

Chapter 3

Conception of Translation Model "LAHDJA"

3.1 Introduction

The fact of being the non-standard form of the Arabic(dialect) as the officially spoken language in the daily talks and the social conversations, has given it more attention by the researchers in the ANLP domain especially in the translation area. In this field of study, a number of efforts have been adopted, the most of them focusing on the Middle-east dialects. In contrast, the Algerian dialect had less attention and it is just beginning to be studied. In this chapter we will present the conception of our proposed translation model LAHDJA, Starting by introducing our corpus AMSAC, our approach to building it, statistics and finally our approach to build the LAHDJA model.

3.2 General Architecture

Figure 3.1: General Architecture of AMSAC + LAHDJA

3.3 Building of AMSAC

In order to create our AMSAC corpora (Algerian dialect Modern Standard Arabic Corpora), we have been using tree resources, which are: Tatoeba, Twitter, Youtube. Data collection was in varying proportions. In the following, we will explain our methodology for collecting data with corresponding statistics for each source.

3.3.1 Data source

Tatoeba

The website Tatoeba¹, provides more than 160 different language data sets for machine translation. We selected the Arabic language. The data set has been expanded to include 32,000 sentences.

¹https://tatoeba.org/

Figure 3.2: Tatoeba process, visual explanation

Twitter

Twitter² is a fantastic social networking network that allows you to download tweets, list of follower from specific id. We chose two Algerian superstars³ whose work is aimed at the Algerian people to target the Algerian tweets. Both have over 470k and 300k followers on Twitter. We started by scraping the followers with twint⁴. Next, we scraped all tweets from each public Twitter account using the same method. Finally, we got 3,715,093 tweet.

Figure 3.3: Twitter process, visual explanation

²https://www.twitter.com

³1: DZjoker , https://twitter.com/DZjokerOfficiel;

^{2:} ZaroutaYoucef, https://twitter.com/ZaroutaYoucef

⁴https://github.com/twintproject/twint

Youtube

Youtube has many Algerian creator which they use AD as main language in their videos.

Figure 3.4: Youtube process, visual explanation

3.3.2 Process of building AMSAC

Part 1 (Tatoeba)

The database is downloaded from the site. There are 23000 phrases in the data collection. We divided it into files that are smaller. There are 100 phrases in each file. We have produced a post in which we asked the public to help us establish the company via a Facebook group titled 1001tech. We develop and transmit files depending on what users request. Some people don't have a machine. We may therefore construct editable sheets online with Google Sheets. Through addition, a group choose to just write messages in Messenger. Over 200 people reacted to our post over the first week. We received more than 116 files. After 6 weeks the post went deep on Facebook as 1001Tech posts have been published a day.

We collect non-translated files to optimize our usage for the Tatoeba data collection. We paid for the translation of the materials to four people afterward. The sum of these four translators translated phrases was 5600.

3.3.3 Files received by regions

Figure 3.5: Regions

Figure 3.6: Number of files received per region

Southwest comes the first by 41 file, and the last one is Northeast. in addition to 22 files from unknown provinces personal data purpose.

Part 2 (Twitter)

Each tweet contains 36 properties. We continued to sift data by language. Furthermore, only 160 tweets out of 2000 were able to be translated. As a result(2 hours of working time). We conclude that utilizing tweets to translate is more difficult than using other approaches.

Part 3 (Youtube)

Using the same idea as Twitter, we focused on Algerian Youtubers⁵. by targeting Algerian commeents and creating the MSA side. we got 560 parallel sentences.

3.4 AMSAC discussion

In this section we will present a brief review about the MSA and the Arabic dialects. We will first summarize the brief rules related to the Algerian dialect, with examples. We will also discuss how the Algerian dialect is a variety of languages due to the fact that there are more than one dialect in Algeria, as an adding to the fact that its language is usually spoken and has no standard orthography.

3.4.1 Algerian Dialect Study

Algerian dialect has a rich vocabulary that present unique challenge for NLP basics, since this language is usually spoken, it has no established rules to write it, for example a single word or meaning, could have many orthography forms, and the fact of being this dialect different from the MSA it's also different from other Arabic dialects and the other Algerian dialects according to the regions. For example the dialect of the north is different from the south, and the east dialect also differs from the one in the west and center. Other languages, like as French and Berber, have a strong effect on this dialect, the reason that makes it difficult also in the Arab world. In the table 3.1 we summarized a brief characteristics and rules related to this dialect.

 $^{5} \rm https://www.youtube.com/$

/	Rule	Example	English	
	VSO	راح سامي لليكون		
	VOS	راح لليكون سامي		
Sentence structure	SOV	سامي راح لليكون	Sami went to school	
	SVO	ساميّ لليكون راح		
	OVS	لليكون راح سامي		
	OSV	لليكون سامي راح		
		ما کتبتش	I didn't write	
Negation	m + verb + ما	ما لعبتش	I didn't play	
		ما قريتش	I didn't do my home work	
	i + verb	أشربْ		
Imperative	ي + verb + أ	أشربي	Drink	
	و + verb $+$ أ	أشربو		
	verb + ت	تاكل	She eats	
Present	+ verb	ياكل	He eats	
	ن + verb	ناکل	I eat	
	و + verb + يـ	ياكلو	They eat	
	و + verb + تـ	تاكلو	You eat	
	و +verb + نـ	ناکلو	We eat	
	ي + verb + تـ	تاكلي	You eat	
Future	present rule غدوا +	غدوا نخرجو	Tomorrow, we will go out	
ruuute	present rule أومبعد	أومبعد ناكلو	We will eat later	

Table 3.1: Characteristics of Algerian Dialect

3.4.2 Word variation

Algerian dialect is a variety language on it's own. It has a vocabulary that can have several different forms of a one single word within the different dialects from the north to the east, west, center and south. As the table 3.2 below shows , sometimes one word can have different forms within the different dialects, but other times, the whole word would change.

MSA	East	West	North	South	Center
ذهبت	رۆحت	رحت	رحت	مشيت	قضيت
إدفع لي المال	سلكني	خلصني	خلصني	خلصني	خلصني
الآن	توا	درووك	دوکا	درکا	دڭ
اسرع	سرع	غاول	بالخف	ليهليه	فيسع

Table 3.2: Example of word variations

3.5 Statistics

In this section, we are going to show some statistics about AMSAC corpora before normalization and our approach concerning the normalization itself.

3.5.1 Before Normalization

/	Number of letters	Number of words	Vocabulary	AVG word length	AVG sentence length
AD	383180	70550	20214	5.43	4.81
MSA	341358	68044	18518	5.03	4.64

Table 3.3: Statistics before normalization

3.5.2 Normalization

The table below shows you the changes applied to AMSAC in order to reduce vocabulary size

N	Change	Example		Applie	ed Side
	Change	Before	After	MSA	DA
1		•			
2		١]	
3		۲		1	
4		٣		1	
5	Remove arabic	٤		1	
6	numbers	0			
7		٦			
8		V			
9		٨		1	
10		٩		1	
11		0		yes	
12		1			yes
13		2			
14	Domorro	3			
15	Remove	4			
16	numeric	5			
17	numbers	6		1	
18		7			
19		8			
20		9			
21	Remove diactilization	أُطْلُبْ العِلْمَ مِنَ المَهْدِ إِلَى اللَّحْدِ.	اطلب العلم من المهد إلى اللحد.		
22		ö	٥		
23		ذ	د		
24	Letter unification		•	No	
25			1		
26			1]	
27		Ĩ	1]	
28	Sentent structor	۶ _	<u>۶</u> _		
29	modification	۶	!	yes	
30					
31	words ending	ى	1		
32	Words starting with	فال	ف ال	No	
33	with starting with	بال	ب ال		

Table 3.4: Changes applied to AMSAC in order to reduce vocabulary size

3.6 Methodology

Traditionally, Recurrent Neural Networks or (RNN) have been used in Natural Language Processing (machine learning). When a sequence is processed, the hidden state (or "memory") that is used to generate a prediction for a token is also sent on, so that it can be utilized to generate the next prediction.

While recurring networks were able to enhance the state-of-the-art in natural language processing, they also had a range of disadvantages:

- RNNs were extremely susceptible to the problem of disappearing gradients. The gradient chain utilized for optimization can be so extensive, especially with extended sequences, that actual gradients are very tiny at the early stages. In other words, the most upstream layers learn essentially nothing, just as with any network impacted by vanishing gradients.
- The same is true of memory. The hidden state is transferred to the next stage of prediction, which means that the majority of available contextual information relates to the short-term view of the model. Therefore, with standard RNNs, models have a long-term memory problem, which is good in the short run but highly poor for the long term.
- Sequential processing occurs. That is, the repetitive network must pass every word in a sentence, which returns a prediction. Because recurring networks can be computationally costly, it can take some time before a prediction is formed on the output. The recurring networks have an inherent difficulty.

Fortunately, many of the above concerns were solved in the 2010s by researching and applying Long-Short Memory networks (LSTMs) and Gated Recurrent Units (GRUs). LSTMs are very resilient to the problem of losing gradients by means of the cell-like structure that holds the memory. Moreover, as memory is now kept independent from the preceding cell output, they are both able to store longer-term memory.

Especially when the attention mechanism was established, where a weighted context vector that weighs the results of all the previous prediction stages is provided in place of the hidden state, long-term memory problems quickly decreased. The only remaining challenge is sequential processing which imposes a considerable resource gap on training a natural language processing model.

3.6.1 Transformers Architecture

Vaswani et al. asserted in an important piece from 2017 that attention is everything you need[25] — in other words, recurring building building blocks are not needed to be truly effective in the NLP tasks of a deep learning model. They presented a novel design, the Transformer, capable of preserving attention during concurrent sequences: all words collectively, not word by word.

The third issue of the above three is that sequences have to be handled sequentially, resulting in a great many computer costs. Parallelism has become tangible with transformers. Architectures based on transformers are available in many flavors. Researchers and engineers have considerably experimented and brought change based on classic Transformer architecture. But the original architecture of Transformer looks like this 3.8.

As we see the transformers is seperated into two segments.

- An encoder segment that uses source language inputs, creates an incoming embedding for them, encodes positions, calculates where each word needs to work within a multi-context environment and then outputs a put it in perspective.
- A segment of the decoder, using the input of the target language, creates a position embedding for the target language, calculates where the word must be concerned and then combines the output of the decoder with what is produced so far. As a result, a Softmax and hence the argmax class prediction predicts the following token (where each token, or word, is a class).

Consequently, the original Transformer is a classical model sequence to sequence.

3.6.2 The translators analogy

Assume our goal is to create a language model that can translate AD text into MSA. In the classic case, using more traditional methodologies, we would learn a model capable of performing the translation directly. To put it another way, we are training one translator to translate AD into MSA. In other words, the translator must be fluent in both languages and comprehend the links between terms in both languages. This will work, but it is not scalable.

Transformers work differently since they are using the architecture of the encoder decoder. Think of it as if two translators work with you. The first translator can translate AD into a global intermediate language. Another translator is able to translate it into MSA. You will nonetheless allow translations pass through the intermediate language first for every translation task. But it's scalable as well: for instance, we may utilize the intermediate language to train a text resumed model.

The encoder segment

A Transformer's encoder section is in charge of transforming inputs into some intermediary, high-dimensional representation. Visually.

- *Input Embedding* are scripts that translate tokenized inputs into vector format so they can be used.
- *Positional Encoding* alter the vector outputs of the embedding layer somewhat, providing positional information to these vectors.
- The actual encoder segment, that learns to display the input vectors attended.
 - *Multi-head attention segment*, It does multi-head self-attention, adds the residual connection, and then normalizes the layers.
 - Feed Forward Segment, For each token, the encoder output is generated.
 - The encoder section can be repeated a Nth number of times.

N times encoder segment

- *Multi-Head attention block*: There's a multi-head attention block moving on. This block enables self-attention during each sequence.
- *Feed Forword block*: It generates a dmodel-dimensional and hence 512-dimensional vector that encodes the token after generating attention for each token (word).
- *Residual connections*: A connection that does not flow through a complex block is referred to as a residual connection. Two residual connections can be seen here: one from the input to the first Add Norm block, and another from there to the second block. Because gradients can flow freely from the end of the model to the beginning, residual connections allow the models to optimize more efficiently.
- *Add & Norm blocks*: The output from either the Multi-head attention block or the Feedforward block is combined with the residual in these blocks, and the result is then layer normalized.

The decoder segment

This Transformer component is in charge of turning the intermediary, high-dimensional representation into predictions for output tokens.

- *Output Embeddings*: which, like the embeddings used for the inputs, converts tokenized outputs into vector format. The only change here is that the outputs are one position to the right.
- *Positional Encodings*: which, like the input positional encodings, modifies the vector outputs of the embedding layer somewhat, adding positional information to these vectors
- Actual decoder segment: Composed of two things.
 - Masked multi-head attention segment which executes multi-head self-attention on the outputs in a disguised manner, so that positions are solely dependent on the past.
 - multi-head attention segment The model learns to associate encoded inputs with desired outputs by performing multi-head self-attention on a mixture of (encoded) inputs and outputs.
- The feed forward segment, which processes each token individually.
- Finally, a linear layer is used to generate logits, and a Softmax layer is used to generate pseudoprobabilities. We know which token to take and add to the tokens already predicted by obtaining the argmax value of this prediction.

N times Decoder Segment

The functioning of the first two components of the decoder segment was identical to that of the first two components of the encoder segment.

• A masked multi-head attention segment where the model learns which prior tokens it needs attend given some token by applying self-attention to (masked) outputs.

- A multi-head attention segment where self-attention is applied to encoded inputs (acting as queries and keys) and the combination of masked multi-head attention outputs / input residual is the gateway via which encoded inputs and target outputs are mixed.
- A feedforward segment which is applied to each token as it is handed along.

Finally, a linear layer and a Softmax activation function are included as an appendix. These will take the decoder segment output and convert it into a logits output and a pseudo probability output that assigns probabilities to each of the potential token outputs given the logit values. We can discover the most likely forecast here by just taking the argmax value from these results.

$$Attention(Q,K,V) = \frac{Softmax(QK^{T})}{\sqrt{d^{K}}}V$$

Figure 3.7: Attention

- Q is a matrix that contains the query (vector representation of one word in the sequence).
- V are the values, which are again the vector representations of all the words in the sequence.
- K are all the keys (vector representations of all the words in the sequence).

Figure 3.8: Transformers Architecture

Chapter 4

Implementation and Results

4.1 Introduction

In this chapter we will present implementation and results of this project, including the development environment and the evaluation method for our model. We will also present our AMSAC corpus, the experiments and the final tests. Finally we will present the different GUI of our proposed model LAHDJA and the conclusion.

4.2 Used tools

Ν	System Tool	Description	Version	
1	Ubuntu ¹	- Linux Operating System	18.04LTS	
2	$VS Code^2$	- IDE	1.56.2	
2	BDF_3	- Sub Word NMT	037	
5		- Segment text into subword units	0.5.7	
4	Buckwalter ⁴	- Transliterate arabic text to alphabetic letters	0.6.0	
		- Sequence modeling toolkit using Pytorch		
5	Fairseq[20]	- customizable toolkit for creation Models of	0.10.2	
		- Translation		
6	$Python^5$	- Object Oriented Programming language	3.8.x	
7	$Dart^6$	- Object Oriented Programming Language	2.13	
8	Fluttor ⁷	- Google's UI toolkit for web, desktop and mobile apps	<u> </u>	
0	rutter	- Based on Dart	7 2.2	

In this section, we represent different tools used for our experiments.

Table 4.1: System and Tools

¹https://ubuntu.com/

²https://code.visualstudio.com/

³https://pypi.org/project/subword-nmt/

⁴https://pypi.org/project/lang-trans/

⁵https://www.python.org/

⁶https://dart.dev/

 $^{^{7}\}mathrm{https://flutter.dev/}$

BLEU(Bilingual evaluation understudy) method for LAHDJA's evaluation BLEU method is an automatic tool for machine translation's evaluation, proposed on July 2002. It proved her benefit by deriving her judgment from human understanding. This approach based on the rule:[21]

$$BLEUScore = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

Where:

$$BP = \begin{cases} 1, & \text{if } c > r\\ exp(1-r/c), & \text{if } c \le r \end{cases}$$

and:

$$p_n = \frac{\sum_{C \in Candidates} \sum_{n-gram \in C} Count_{clipped}(n-gram)}{\sum_{C' \in Candidates} \sum_{n-gram' \in C'} Count_{clipped}(n-gram')}$$

- N: Length of sentence
- w_n : Positive weights
- c: Length of the candidate translation
- r: The effective reference corpus length

4.3 AMSAC

After normalizing the data in our corpora we got results shown in the table below. In total we have 14655 parallel sentences. We passed MADAR[4] by 2655 sentences and also PADIC[17] by 8255 sentences. AMSAC now is the biggest parallel corpora which contain a Dialect and MSA translation.

/	Number of words	(+/-)%	Vocabulary	(+/-)%	AVG word length	(+/-)%	AVG sentence length	(+/-)%
AD	62136	-11.93	17222	-14.80	5.01	-7.73	4.69	-2.49
MSA	64100	-5.80	17442	-5.81	5.31	5.57	4.85	4.53

Table 4.2: Statistics after normalization

4.4 Experiments

In this section we will present our experiments on AMSAC.Firstly, we present used tools in our model "LAHDJA".

4.4.1 Impact of BPE and vocabulary on BLUE Score results

This experiments were applied on part of AMSAC. the goal behind this experiment was getting the impact of BPE (vocabulary size) and layers of the module on BLEU score result. The number of sentences used in this part was 13.000 sentences. 10.000 for training, 1.000 for validation, 2.000 for testing. on this expirement the normalization were appled for both sides(AD and MSA)

Used parameters

This Table shows the parameters that we modified in Fairseq tool in order to built our model. Parameters | Description

	1
Learning Rate	Determines how quickly the model will respond to newly measured errors.
Encoding Layers	How much layer for encoding process
Decoding Layers	How much layer for decoding process
Head Attentions	How much time the sentence pass in the function to be evaluated
Epoch	Number of epochs
Max Tokens	Token per part
Batch Size	How much sentences in a single step
Drop Out	Speed of drop out
Layer Drop	Layer drop

Table 4.3: Used parameters in Fairseq

Giving parameters values

- Vocabulary size: changes from 300 up to 3500.
- Layers: from 2by2 until 4by4.
- Learning rate: 4.
- Head-attention: 4.
- Batch size: 512.
- Epochs: 50.
- Tokens: 400.
- Layer drop: 0.004.
- Drop out: 0.015.

Impact of number of layers on Blue score results (with bpe "BLEU" and without bpe "BnT")

/	2x2			3x3			4x4		
VOCAB	BLEU	PPL	BnT	BLEU	PPL	BnT	BLEU	PPL	BnT
200	19.55	12.88	10.38	19.32	12.91	9.51	19.44	13.06	10.25
300	18.14	15.19	10.8	17.81	15.55	9.33	17.24	15.85	10.38
400	16.71	17.31	9.84	16.38	18.28	10.1	15.92	18.28	10.14
500	15.41	20.23	10.4	15.12	20.47	10.49	12.76	21.01	10.35
1500	10.87	44.75	10.6	11.14	46.76	11.15	10.61	49.49	10.69
2000	9.27	69.76	10.47	8.95	74.61	9.51	7.55	81.48	9.73
3000	8.88	83.02	9.88	8.88	87.96	10.11	9.13	93.03	8.95
3500	7.92	94.42	9.11	8.81	100.07	10.26	7.26	114.71	9.91

Table 4.4: Impact of number of layers on Blue score results (with bpe "BLEU" and without bpe "BnT")

Discussion

- BLEU results will increase if we have a smaller vocabulary size.
- The impact of BPE in this experiments is limited.
- Perplexity increases if the vocabulary size increased.

Reasons

- BnT (BLEU score without BPE tokenizer) results are close because of how BLEU is calculated
- The characteristics of the corpora and variation of sentences increases the difficulty of learning the data
- Lack of consistency in the sentences

4.5 Final Tests

After completing the version 1.0 of AMSAC. We tried multi ways to improve our results by limiting the length of sentences, using BPE and using Buckwalter transliteration. We got the below results

As we see in this results, the impact of BPE and Buckwalter is remarkable in which the results has been changed from 7.74(the worst) to 15.13 (the best results). Our model has achieved 15.13 BLEU score which is more than the Meftouh[17] results by 0.03 in Algerian Dialect Modern Standard Arabic translation.

4.6 Our Application

In this section we will present the LAHDJA interface we built. It requires the operating system Linux and the availability of the Flutter library to be run.

LAHDJA application contain only one interface with a simple input/output components. The uses the Faireseq-interactive tool directly to get the translation.

	LAHDJA				
Algerian Dialect		Modern Standrad Arabic			
ولات طبيبة		اصبحت طبيبة.			
	ترجم				

Figure 4.1: LAHDJA GUI

	LAHDJA					
Algerian Dialect	Modern Standrad Arabic					
لازم تری	.بجب ان تذهب					
	ترجم					

Figure 4.2: LAHDJA GUI

4.7 Conclusion

With regards to our AMSAC corpora of over 14k parallel sentences (the largest Algerian dialect corpora until now) which we built, we achieved the best results in translation of Algerian dialect until now, compared to the Meftouh [17] model with a 15.13 BLUE score. In this chapter, we presented implementation and results of our approach to build the AMSAC corpus and LAHDJA model, including statistics, experiments and final tests. We have also presented the development environment and the LAHDJA application.

Conclusion

Arabic is the official language of the Arab world used in official domains such as news talks, newspapers and for learning in school. It is the standard form language overall in Arabic countries. In contrast, the daily spoken language used are the dialects.

Arabic dialects are non-standard variants of Arabic that are usually spoken and increasingly written throughout the Arab world. These dialects have a lack of uniform orthographies and have been classified as under-resourced languages, the thing that presents a barrier for natural language processing applications. While natural language processing (NLP) researchers and developers are more likely to focus on the standard form of any language, more research started to be focused on to meet the demands of non-standard variations and dialects to translate these dialects to the standard form. This area of studies is a multipurpose research, it can help to control and classification in the field of sociology and context categorization as well as in the commercial and communication domains and make it easy to the non-native or non Arab people to deal with one single language which is the standard form of the Arabic instead of multi dialects.

In this project, we first presented our AMSAC corpus (Algerian dialect Modern Standard Arabic Corpora), a parallel corpus for Algerian dialect with the MSA. AMSAC corpus is a collection of 14655 sentences containing a vocabulary of 17222 of Algerian dialect words and 17442 of MSA words in parallel. We have also presented the steps of collection and normalization and its statistics to achieve the good results at. We have also presented our proposed model LAHDJA, a translator model for the Algerian dialect to the modern standard Arabic. The LAHDJA model has achieved better results than the Meftouhe in Algerian Dialect Modern Standard Arabic translation. We have presented the conceptions of the translation model LAHDJA, the implementation and methodology and finally the final tests and their results.

Our immediate next steps are to make the application available for mobile phones. We will also work on extending the size of the AMSAC corpus by adding more sentences for achieving the best results always.

Bibliography

- E. Abuelyaman, L. Rahmatallah, W. Mukhtar, and M. Elagabani. Machine translation of arabic language: challenges and keys. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, pages 111–116. IEEE, 2014.
- [2] L. H. Baniata, S. Park, and S.-B. Park. A neural machine translation model for arabic dialects that utilizes multitask learning (mtl). *Computational intelligence and neuroscience*, 2018, 2018.
- [3] A. Baumgartner-Bovier. La traduction automatique, quel avenir? un exemple basé sur les mots composés. *Cahiers de linguistique française*, 25:274, 2003.
- [4] H. Bouamor, N. Habash, M. Salameh, W. Zaghouani, O. Rambow, D. Abdulrahim, O. Obeid, S. Khalifa, F. Eryani, A. Erdmann, et al. The madar arabic dialect corpus and lexicon. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018.
- [5] P. Bouillon. Traitement automatique des langues naturelles. De Boeck Supérieur, 1998.
- [6] J. Chandioux et al. Histoire de la traduction automatique au canada. *journal des traduc*teurs, 22(1):54–56, 1977.
- [7] M. A. Chéragui. Theoretical overview of machine translation. In *ICWIT*, pages 160–169. Citeseer, 2012.
- [8] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition, pages 3642–3649. IEEE, 2012.
- [9] M. Cori and J. Léon. La constitution du tal. Traitement Automatique des Langues, 43(3): 21–55, 2002.
- [10] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. *IEEE Transactions on audio, speech,* and language processing, 20(1):30–42, 2011.
- [11] Y. Fukumochi. A way of using a small mt system in industry. the 5th Machine Translation Summit, 1995.
- [12] S. Harrat, K. Meftouh, M. Abbas, W.-K. Hidouci, and K. Smaili. An algerian dialect: Study and resources. *International journal of advanced computer science and applications* (IJACSA), 7(3):384–396, 2016.

- [13] W. J. Hutchins and H. L. Somers. An introduction to machine translation, volume 362. Academic Press London, 1992.
- [14] H. Kaji. Hicats/je: a japanese-to-english machine translation system based on semantics. In Machine Translation Summit. Citeseer, 1987.
- [15] Y. Lepage and E. Denoual. Aleph: an ebmt system based on the preservation of proportional analogies between sentences across languages. In *International Workshop on Spoken Language Translation (IWSLT) 2005*, 2005.
- [16] K. Meftouh, S. Harrat, S. Jamoussi, M. Abbas, and K. Smaili. Machine translation experiments on padic: A parallel arabic dialect corpus. In *The 29th Pacific Asia conference on language, information and computation*, 2015.
- [17] K. Meftouh, S. Harrat, and K. Smaïli. Padic: extension and new experiments. In 7th International Conference on Advanced Technologies ICAT, 2018.
- [18] P. P. Monty. Traduction statistique par recherche locale. 2010.
- [19] H. Mubarak. Dial2msa: A tweets corpus for converting dialectal arabic to modern standard arabic. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), OSACT2018 Workshop, pages 49–53, 2018.
- [20] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038, 2019.
- [21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association for Computational Linguistics*, pages 311–318, 2002.
- [22] F. Sadat, F. Mallek, M. M. Boudabous, R. Sellami, and A. Farzindar. Collaboratively constructed linguistic resources for language variants and their exploitation in nlp application– the case of tunisian arabic and the social media. In *Proceedings of workshop on Lexical* and grammatical resources for language processing, pages 102–110, 2014.
- [23] M. A. Sghaier and M. Zrigui. Rule-based machine translation from tunisian dialect to modern standard arabic. *Proceedia Computer Science*, 176:310–319, 2020.
- [24] K. Shaalan, S. Siddiqui, M. Alkhatib, and A. A. Monem. Challenges in arabic natural language processing. *Computational Linguistics*, 2019.
- [25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.
- [26] F. Yvon. Une petite introduction au traitement automatique du langage naturel, support de cours. *Ecole Nationale Supérieur des télécommunications*, 2007.
- [27] R. Zbib, E. Malchiodi, J. Devlin, D. Stallard, S. Matsoukas, R. Schwartz, J. Makhoul, O. Zaidan, and C. Callison-Burch. Machine translation of arabic dialects. In *Proceedings* of the 2012 conference of the north american chapter of the association for computational linguistics: Human language technologies, pages 49–59, 2012.
- [28] J. Zhang, C. Zong, et al. Deep neural networks in machine translation: An overview. IEEE Intell. Syst., 30(5):16–25, 2015.