

Democratic and Popular Republic of Algeria

Ministry of Higher Education and Scientific Research

Ahmed Draia University

Faculty of Science and Technology

Department of Mathematics and Computer Science

A Thesis Presented to Fulfil the Master’s Degree in Computer Science

Option: Intelligent Systems.

Title:

Preprocessing for Arabic Neural Machine Translation

Prepared by:

Abbou Mohamed Elcherif & Guerrout Omar

Jury Members:

President: Mr.Cheragui Mohammed Amine

Examiner: Mr.Benatillah Djelloul

Supervisor: Mr.Mediani Mohammed

2019/2020

I

Abstract:

Data driven methods have become the way to go when it comes to NLP, especially in the

case of machine translation, with the rise of neural machine translation, a new method that

incorporates the use of recurrent neural networks. These NMT systems are very sensitive to the

quality the training data; a large rich well-structured data set can make huge difference in the

performance of the translation.

This work aims to study the impact of preprocessing on the performance of Arabic-English

Neural Machine Translation Systems. We limit our research on the effect of text segmentation.

 We introduce a new alignment-based segmentation technique that tries to address the issue

of translating from and into the Arabic language. We perform multiple translation experiments in

which we use different Segmentation methods. Our results shows that preprocessing the training

data improves the performance of the NMT model. We also report that our technique improves the

translation performance and even outperform BPE in some cases, however did not match BPE best

performing configuration.

Key words: NLP, machine translation, NMT, segmentation, BPE, alignment, data preprocessing,

Arabic translation.

II

 :ملخص

ة الطبيعية ، أصبحت الأساليب المعتمدة على البيانات هي الطريق الذي يجب اتباعه عندما يتعلق الأمر بمعالجة اللغ

ت العصبية الترجمة الآلية العصبية ، وهي طريقة جديدة تتضمن استخدام الشبكا خاصة في حالة الترجمة الآلية ، مع ظهور

يدة التنظيم أن حساسة للغاية لجودة بيانات التدريب ؛ يمكن لمجموعة كبيرة غنية من البيانات ج NMT المتكررة. تعتبر أنظمة

 .تحدث فرقاً كبيرًا في أداء الترجمة

بية إلى الإنجليزية. الجة المسبقة على أداء أنظمة الترجمة الآلية العصبية من العريهدف هذا العمل إلى دراسة تأثير المع

 .نحن نحد من بحثنا حول تأثير تجزئة النص

. أجرينا تجارب ترجمة تقنية تجزئة جديدة قائمة على المحاذاة تحاول معالجة مسألة الترجمة من وإلى اللغة العربيةقدمنا

بشكل ملحوظ. NMT ق تجزئة مختلفة. تظهر نتائجنا أن المعالجة المسبقة للبيانات تحسن أداء نموذجمتعددة استخدمنا فيها طر

أفضل علىتفوق ي في بعض الحالات ، ومع ذلك لم BPE أبلغنا أيضًا أن أسلوبنا يعمل على تحسين أداء الترجمة بل ويتفوق على

 BPE .تكوين

ة المسبقة للبيانات ، ، المحاذاة ، المعالج BPE، التجزئة ، NMT، الترجمة الآلية ، المعالجة الآلية للغة الكلمات الأساسية:

 الترجمة العربية

III

Résumé:

 Les méthodes basées sur les données sont devenues la voie à suivre en matière de

traitement du langage naturel, en particulier dans le cas de la traduction automatique, avec l'essor

de la traduction automatique neuronale, une nouvelle méthode qui intègre l'utilisation de réseaux

de neurones récurrents. Ces systèmes NMT sont très sensibles à la qualité des données de

formation; un vaste ensemble de données riches et bien structurées peut faire une énorme

différence dans les performances de la traduction.

 Ce travail vise à étudier l'impact du prétraitement sur les performances des systèmes de

traduction automatique neuronale arabe-anglais; nous limitons nos recherches sur l'effet de la

segmentation du texte.

 Nous avons introduit une nouvelle technique de segmentation basée sur l'alignement qui

tente de résoudre le problème de la traduction depuis et vers la langue arabe. Nous avons effectué

plusieurs experimentations de traduction dans lesquelles nous avons utilisé différentes méthodes

de segmentation. Nos résultats montrent que le prétraitement des données améliore

considérablement les performances du modèle NMT. Nous signalons également que notre

technique améliore les performances de traduction et même surpasse BPE dans certains cas, mais

ne correspond pas à la configuration la plus performante de BPE.

Mots clés: traitement du langage naturel, traduction automatique, NMT, segmentation, BPE,

alignement, prétraitement des données, traduction Arabe.

IV

Dedications:

The sake of Allah, my Creator and my Master,

My great teacher and messenger, Mohammed (May Allah bless and grant him),

who taught us the purpose of life,

Our parents who love me unconditionally and who have taught me to work hard

for the things that we aspire to achieve.

My beloved brothers and sisters whose presence gives us meaning in life,

My friends and loved one because they bring joy to our lives,

To all people who are thriving every day to leave the world better than they found,

I dedicate this work to you.

Mohammed Elcherif

V

Dedications:

In the name of Allah, the Most Gracious and the Most Merciful,

I wish to dedicate this thesis to my father (May allah have mercy on him bless and

grant him jannat-ul-firdous),whom i lost just before finishing it, for always

believing in me , for supporting me through the good and the bad and for the

priceless lessons and memories that i will hold on to for the rest of my life.

My mother for always being there for me and all , my brothers and sister for

bringing joy into my life.

All my family and friends for all the support and wishes you have given to me.

Omar.

VI

Acknowledgements

Firstly, we would like to express our sincere gratitude to Mr. MEDIANI

Mohammed for the continuous support of our research efforts, for his patience,

motivation, and immense knowledge. His guidance helped us throughout all stages

of research and writing.

Secondly, we thank the jury members for accepting to examine this work. We

would like also to thank all our teachers at the department of mathematics and

computer sciences and our classmates for the amazing journey throughout the last

five years. We are grateful for knowing and learning from you.

Finally yet importantly, we would like to thank our families, our parents, our

siblings, and our close friends for supporting us spiritually throughout writing this

research work and in life in general.

Abbou Mohammed Elcherif and Guerrout Omar

VII

Table of Contents:

ABSTRACT………………………………………………………………………………………I

DEDICATIONS…………………………………………………………………………………III

ACKNOWLEDGEMENTS………………………………………………………...……………VI

TABLE OF CONTENTS ………………………………………………………………………VII

LIST OF FIGURES...…....XI

LIST OF TABLES……………………………………………………………………………...XII

LIST OF ACRONYMS ……………………………………………………………………….XIII

Chapter 1 : Introduction ...1

1.1. Introduction .. 2

1.2. Natural Language Processing (NLP) ... 3

1.2.1. NLP process:... 4

1.3. Machine Translation: .. 5

1.3.1. Rule-based Machine Translation: ... 5

1.3.2. Statistical Machine Translation (SMT): .. 6

1.3.4. Neural machine translation .. 6

1.4. Challenges to Arabic language processing ... 10

1.4.1. Arabic script ... 10

1.4.2 Arabic morphology: ... 11

1.4.3 Arabic vocabulary .. 11

1.4.4 Free word order .. 11

1.5. Data view .. 12

1.5.1 Data adequacy .. 12

1.5.2 Data Fluency ... 13

1.5.3 Zipf’s Law .. 13

1.5. Conclusion .. 15

Chapter 2 : Text Segmentation ... 16

2.1 Introduction ... 17

2.2. Motivation behind text segmentation: .. 18

2.3. Challenges to text segmentation ... 19

2.3.1. Language dependency .. 19

VIII

2.3.2. Data dependency (Corpus dependency) ... 20

2.3.3. Text segmentation evaluation .. 20

2.4. Related works: .. 21

2.4.1 MADAMIRA: .. 22

2.4.2 Ferasa ... 23

2.4.3 Stanford segmenter .. 24

2.4.4. Byte Pair encoding (BPE) .. 25

2.5 Evaluation metrics ... 27

2.5.1. Word segmentation evaluation .. 27

2.5.2. Machine translation evaluation .. 29

2.7 Conclusion ... 31

Chapter 3 : Alignment-based Segmentation and results ... 32

3.1. The proposed method:.. 33

3.2. Used Hardware and Software: .. 35

A. hardware: .. 35

B. software: ... 35

3.3 Used Data: ... 36

3.4. Implementation details ... 37

3.4.1. Character separation: ... 37

3.4.2 Performing the Alignment: .. 37

3.4.3. Phrase Extraction and filtering: .. 39

3.4.4. Training and Applying BPE: ... 39

3.5. Experiments and results: ... 41

3.5.1. Our Neural machine configuration: .. 41

3.5.2 English to Arabic translation results:.. 42

3.5.3. Arabic to English translation results:... 45

3.6. Conclusion: ... 46

Chapter 4 : General conclusion and future works ... 47

General conclusion .. 48

Bibliography: ... 50

Appendix:.. 53

IX

List of tables:

Table 1.1: the most frequent words in a version of the English Europarl corpus that consists of 30

million words .. 14

Table 3.1: Summary of statistics of the training and test data ... 36

Table 3.2: some statistics about the Arabic vocabulary .. 37

Table 3.3: The Table of phrases with their frequencies .. 39

Table 3.4: comparative table between the Alignment-based BPE model and standard BPE model

 ... 40

Table 3.5: training duration of state of the art NMT models ... 41

Table 3.6: Training duration for some of our experiments ... 42

Table 3.7: the impact of vocab size on the translation performance for BPE algorithm 43

Table 3.8: performance comparison between our technique and BPE with different

configurations (English to Arabic) ... 43

Table 3.9: performance comparison between our technique and BPE with different

configurations (English to Arabic) ... 45

X

List of figures:

Figure 1.1 Terminology of NLP versus NLU...3

Figure 1.2: Steps of NLP ...4

Figure 1.3: steps of RBMT ..5

Figure 1.4: Diagram of the NMT system architecture ..7

Figure 1.5: The NMT process ..9

Figure 1.6: representing how diacritics affect the meaning of the words 10

Figure 1.7: representing the Arabic affixes and their meaning ... 11

Figure 1.8: representing the difference in word order of Arabic and English sentences 12

Figure 2.1: Buckwalter format ... 22

Figure 2.2: Overview of MADAMIRA Architecture (adapted from [13]) 23

Figure 2.3: Ferasa sequence structure .. 23

Figure 2.4: decision rule for the Green and Denero model ... 25

Figure 2.5: Minimal Python implementation of BPE algorithm (adapted from [27]) 26

Figure 2.6: Example of matching N-grams .. 29

Figure 3.1: flowchart representing an overview for the proposed method 34

Figure 3.2: format of the training data ... 37

Figure 3.3: Fast align input format .. 38

Figure 3.4: Fast align output format... 38

Figure 3.5: translation model configuration ... 41

Figure 3.6: Comparative chart (English to Arabic) .. 44

Figure 3.7: Comparative chart (English to Arabic) .. 45

XI

List of acronyms:

NLP: Natural language Processing

MT: Machine Translation

NMT: Neural machine translation

LSTM: Long short-term memory

MRL: Morphology Rich Language

RNNs: Recurrent Neural Networks

DNNs: Deep Neural Networks

OOV: Out of Vocabulary

BPE: Byte Pair Encoding

ABS: Alignment-based segmentation

1

Chapter 1 : Introduction

Chapter one Introduction

2

1.1. Introduction

One of the most important aspects of human beings is their ability to collaborate to achieve

great feats. Such collaboration is only possible because of our ability to share knowledge through

communication. There are many ways of communication with each other whether it is through

speech, text, signals, signs etc.

Although it might seem that communicating is a simple task for us humans, the ability to

understand speech or the ability to read a written text off a screen and comprehend the meaning

behind it is far from simple. We are yet to understand the full mechanisms behind this process.

So how do we achieve human-like processing of languages?

Natural Language Processing (NLP) has been the answer to this problem with the goal of

achieving human-like processing of languages.

Moreover, since most of the knowledge and data nowadays is online, having it accessible

to all is vital, and one major issue is the language barrier due to the existence of so many

languages across the globe. For a long time people used human translators (those who master

two or more languages) but this solution is expensive and time consuming so another faster and

cheaper solution was necessary, this necessity lead scientists to develop to Machine Translation

(MT).

While translation is easy to achieve with pairs of language that are closely related and

have similar morphology and rules like English-French and Spanish-Italian ,Languages that differ

a lot from each other in morphology and rules of composition like for example the pairs Arabic-

English or Chinese-Russian adds another layer of complication to the translation process [1] .

Arabic for example is the fourth most used language [2] on the internet and it is spoken

by more than 400 million person globally, and used by 1.4 billion Muslim to recite Quran and

perform their prayers. It has a huge vocabulary, rich morphology and a complicated sentence

composition, making it a difficult language to translate from and to. This calls for special pre-

processing measurements to be performed on the Arabic text for it to be well segmented and

disambiguated for it to be easily digested by the translation algorithms resulting in an overall better

translation performance.

Chapter one Introduction

3

1.2. Natural Language Processing (NLP)

Natural language processing is a sub-field of Artificial Intelligence, which incorporates the

use of machine learning and computational linguistics; it focuses on achieving human-like

processing of natural language. [3] it is composed of multiple systems that work together to create

an end-to-end interaction between human and machine in human natural language.

In the early days of AI, NLP was believed to be interchangeable to (NLU) Natural

Language Understanding; however, NLU is actually a subset of NLP responsible mainly of

drawing inference out of text, it is in fact one the most challenging aspects of AI that to this day

NLP systems have not achieved yet (check figure (1.1)) .

Figure 1.1 Terminology of NLP versus NLU

Thought we have not reached a true natural language understanding, NLP have made a

great progress in many applications such as machine translation, which achieved translations

comparable to human.

Chapter one Introduction

4

1.2.1. NLP process:

Some of NLP most important phases as shown in figure (1.2):

A. Lexical analysis:

 This step involves splitting the input sentences into small entities called Tokens they represent

the core information that is used throughout the processing.

B. Syntactic analysis:

In this phase, the data is parsed to check and validate the sentence composition for example a

sentence like; “the fridge is inside the cheese” is to be rejected by the parser.

C. Semantic analysis:

In this third phase, the goal is to decipher the meaning behind the text, in other words the

dictionary meaning of each token. For example, the sentence “the fire is cold” is rejected in this

phase

D. Output transformation:

 In this last step, the output from the semantic analyzer is transformed into the desired results.

Figure 1.2: Steps of NLP

Chapter one Introduction

5

1.3. Machine Translation:

Machine translation is the automatic process of transforming a source text from one

language to another.

Machine translation is relatively an old task, early attempts started in 1950s but the real progress

happened in 1970s where there have many approaches to achieve automatic translation:

- Rule-based Machine Translation (RBMT): 1970s-1990s

- Statistical Machine Translation (SMT): 1990s-2010s

- Neural Machine Translation (NMT): 2014- to present

1.3.1. Rule-based Machine Translation:

Rule-based Machine Translation [26] translates using Rules written by humans from

linguistic knowledge from the both the source language and the target language, this approach

requires large set of rules (syntactic, semantic and morphological) and bilingual dictionary and

generates the target text following the steps shown in figure (1.3).

Figure 1.3: steps of RBMT

Chapter one Introduction

6

While this approach provides a simple and predictable translation and requires only a few

computational resources its high development and maintaining or extending costs made it fade

and replaced with other approaches like (SMT) AND (NMT).

1.3.2. Statistical Machine Translation (SMT):

Statistical Machine Translation [25] uses statistical analysis and predictive algorithms of

bilingual text corpora (existing human translations of the source and target language) to produce

a statistical model of translation.

This model is then used on an untranslated text to generate the most probable and

reasonable translation this method can be applied either word-based, phrase-based, syntax-

based and hierarchical phrase-based.

State of the art SMTs are usually phrase based so given a source text. s1
J=s1…..s2…..sJ

the objective of SMT is to translate it to target language t1
i=t1…..t2…..ti by choosing the target text

with the highest probability (see the formula bellow).

Ti
1=argmax P(t1i|s1

J)

Where “s” and “t” are phrases from the source and target languages and “i” and “j” are the number

of words in source and target language respectively.

1.3.4. Neural machine translation

Neural machine translation (NMT) in newly rising approach to machine translation, it was

first introduced in 2014[4], then it caught the attention of researchers and became a hot topic in

the field of machine translation due to its promising potential.

Neural machine translation uses large recurrent neural networks to perform translation its

strength lies in its ability to learn directly from the data, a true end-to-end method [4], and its

architecture is composed of two recurrent neural networks (RNNs) an Encoder and a Decoder,

that work together to produce a translation from a text input check (figure 1.4).

However, NMT systems in their early stages actually performed worse than the existing phrase

based systems due to its slower training and inference speed, the inability to deal with rare words,

Chapter one Introduction

7

and the problem of long sentences. Nevertheless, recent models have improved upon NMT

systems making on par if not outperforming all previous techniques.

Figure 1.4: Diagram of the NMT system architecture

NMT process:

NMT process goes through many steps in order to achieve the desired translation check

figure (1.5).

The first step in neural machine translation is training the model, which requires a large

amount of data and computational power.

NMT systems usually use a bilingual corpus, which is a large collection of sentences in

one language and their corresponding translation, these sentences must be aligned correctly

each sentence by its translation.

Chapter one Introduction

8

Before inputting the data into the model it must be preprocessed, text preprocessing is an

important step in machine translation it helps machine learning algorithms digest the inputted data

more efficiently resulting in better model performance.

Generally, there are three main components to text preprocessing:

 Tokenization

 Normalization

 Noise removal

Firstly, tokenization also referred to as segmentation is the process of splitting a sequence of

characters into small units called tokens; a ‘token’ is the smallest unit when describing syntax of

a language example:

 سأخبركم س+أخبر+كم

Text normalization in the process of converting the words into a uniform format, which will

facilitates operations on them, an example to that is converting all letters to lower case letters,

removing punctuation, stemming, and lemmatization.

 Lastly, noise removal is the process of removing non-meaningful characters and digits that can

interfere with analyzing the text such as (@ ,<>,§,#).

After preprocessing the data it is then fed to the neural network to begin its training, at the

start we define multiple parameters concerning the size of neural network, the size of embedding,

the optimization algorithms to use, the duration of training and much more, then the models is left

learning and improving by the time.

When the training is done, the model is tested to evaluate its performance.

 NMT model usually operates on closed vocabulary corpus meaning it assumes a fixed

vocabulary size, since it embeds each word of the vocabulary to a sequence on bits (word

embedding), However there are segmentation techniques that manipulate vocab size to avoid this

issue.

Chapter one Introduction

9

Figure 1.5: The NMT process

Chapter one Introduction

10

1.4. Challenges to Arabic language processing

1.4.1. Arabic script

One of the biggest challenges of Arabic language processing is the Arabic script itself [5],

due to the lack of letters representing short vowels, absence of capitalization, multiple forms of

letters and minimal punctuation, that’s why it is challenging to processing compared to European

languages for example:

In the Arabic text short vowels are represented by diacritics “التشكيل” which are a specific marks

above or below the letters indicating what kind of short vowel is used, having this instead of

dedicated latter increases the processing complexity, meaning each word might have multiple

meaning depending on the use of diacritics as shown in figure (1.6) .

Figure 1.6: representing how diacritics affect the meaning of the words

Adding to that in most Arabic text there is no diacritics; the reader is expected to predict them

based on his prior knowledge.

Arabic letters have multiple forms depending on their position for example: the letter “غ” (ghain)

changes depending on whether it’s in the beginning, the middle, the end of the word (غغغ).

In most European languages, sentences usually begin with an upper class letter and end

with a period, which helps in the translation process since it is crucial to know exactly the

beginning and the end of the sentences. However, in languages like Arabic, Japanese, Chinese,

the absence of capitalization makes it difficult to know the boundaries of sentences, thus

complicating the processing of their text.

Chapter one Introduction

11

1.4.2 Arabic morphology:

Arabic is considered a morphologically rich language [6] (MRL) which means that the

grammatical nature of words is not necessary indicated by its position in the sentence but rather

with a change in the word itself, these changes are fused into the words and it is often hard to

define rules that separate the root from the added particles

Arabic also has a wide variety of affixes, which are letters, added to the beginning or the middle

or the end of the word altering its meaning [7].

Figure 1.7: representing the Arabic affixes and their meaning

1.4.3 Arabic vocabulary

Arabic is the richest language vocabulary wise, according to a survey done by SEBIL

Center in which they came up with an estimation of the size of the Arabic vocabulary, 12 million

non-redundant Arabic word compared to 600 thousands English word, this gap between the

vocabulary sizes makes it difficult to translate to and from.

1.4.4 Free word order

Most languages have somewhat a strict word order, meaning that for a sentence to have

meaning it must follow a specific structure, for example in English we say “ Ali wrote the lesson”

subject+verb+object, but in Arabic that sentence can be written in many different ways having the

same meaning .

Chapter one Introduction

12

Figure 1.8: representing the difference in word order of Arabic and English sentences

All these special characteristics of the Arabic language requires a complex preprocessing

algorithms to tackle all these issues, resulting in a better quality training data.

1.5. Data view

Natural language processing domain and especially Machine translation domain

acknowledges that is futile to try to write down all the rules and dictionaries that govern languages

[8], but rather that all the necessary information to perform translation should be extracted directly

from large amounts of translation examples.

Text corpora or text corpus is a collection text and there two main types of it: monolingual

and parallel. Acquiring a large amount of text in single language will help us learn a lot about said

language the word usage the structure of sentences and there is even a possibility to translate

purely from a large amount of monolingual text with the help of Unsupervised Machine

Translation. However, a better resource to use in MT is parallel corpora that comes in the form of

sentence pairs, a source sentence and its translation.

1.5.1 Data adequacy

The process of machine translation relies heavily on data adequacy, the ability to match

source text to its translation. Let us take for example the word (protection) which can have multiple

Arabic translation depending on the context.

To predict a word translation a computer counts how many times the word (protection) is

translated to those possible Arabic translations:

Chapter one Introduction

13

From what we see, the most likely translation is (الحماية), but (الوقاية) is also a high possibility

meaning the system would be wrong many times. However, we can improve upon that by

considering the boundaries.

This example illustrates contextual information can improve the prediction of the correct

translation significantly. However, there will be always times were the system predicts the wrong

translation Hence, the engineering mantra of data-driven machine translation research is not to

achieve perfect translation, but to drive down error rates [8].

1.5.2 Data Fluency

Parallel corpora does more than just matching words with their translation, it helps with

arranging words in the correct way to insure the fluency of the output. This involves selecting the

right word order the right function words and the convenient phrasing for the context.

Corpora data would tell us for example, ‘he went to school ‘is a better ordered sentence than

‘school he to went’ because the first sentence has been observed many times by the system

making it a better choice.

1.5.3 Zipf’s Law

Sparsity is a major issue in data driven methods. Let us assume that we have a corpus

containing 100 million English words with 100,000 valid word, one would assume that this is a

very rich statistics to learn about the language but unfortunately this is not the case.

 The distribution of words in a corpus is highly skewed (see figure 2.9). Zipf’s law states that the

frequency f of a word (or its count in a corpus) multiplied with its rank r when words are sorted by

frequency is a constant k.

Chapter one Introduction

14

Table 1.1: the most frequent words in a version of the English Europarl corpus that consists of 30 million words

Zipf’s law predicts that no matter how big the corpus is there will be many rare words in it,

Gathering larger corpora will increase the frequency of words, but also reveal previously unseen

words with low counts.

Chapter one Introduction

15

1.5. Conclusion

The need for a faster and cheaper way of translation gave birth to machine translation, which

came with many challenges and solutions. In this first chapter, we introduced the concept of

machine translation; we talked about the currently used techniques more specifically the state of

the art neural machine translation systems; how it works, its limitation, and how it stacks against

the previous techniques, then we elaborated on the NMT process and highlighted its important

phases.

Then we spoke about Data preprocessing and the significant improvement it adds to the

performance of the NMT systems, especially in the case of complex languages like Arabic.

After that, we talked about the unique characteristics of the Arabic language that makes it pose a

challenge for machine translation.

Finally we discussed the data side and how its problematic when it comes to machine translation.

Chapter two Text Segmentation

16

Chapter 2 : Text Segmentation

Chapter two Text Segmentation

17

2.1 Introduction

When analyzing a natural language text, it is necessary to define its building blocks,

defining these units is considered a challenge, especially when we take in consideration the

diversity of human languages each with its unique writing rules, Natural languages contains

various ambiguities and finding a solution to this particular problem is one of the main challenges

of NLP.

Text segmentation is the process of splitting a sequence of characters into linguistically

meaningful parts called segments or tokens, these segments can be characters, words,

sentences or any type of information unit depending on the end goal of the text analysis [8].

Segmentation is an important step in text processing it allows us to extract coherent data,

which we can help apply all sort of different NLP tasks such as Machine Translation,

summarization, POS tagging in a more efficient and effective way.

Word segmentation also referred to as tokenization is the process breaking up a character

sequence by identifying the word boundaries which is where a word ends and another start, this

results in what is referred to as tokens, this process can be challenging especially in languages

with no word boundaries markers in their writing system .

Sentence segmentation on the other hand is the process of splitting the text into sentences

containing one or more words it is done by defining the sentence boundaries, in application word

segmentation and sentence segmentation overlap each other one cannot be achieved without

the other [8].

Segmentation algorithms are heavily dependent on the targeted language meaning a fine

tuned segmentation algorithm for a specific language would be completely inadequate for

another.

Arabic is considered a complex language that poses many challenges in NLP field, it has

a rich morphological system and ambiguous writing rules [1], so when implementing a

segmentation scheme for Arabic there are multiple aspect to take in consideration in order to

achieve a correct segmentation.

Chapter two Text Segmentation

18

2.2. Motivation behind text segmentation:

Assuming we want to analyze a specific language script, in order perform NLP tasks such

as Machine translation. We will have to deploy an automatic mechanism to go through large

amount of data trying to define features and find patterns specific to said language script, however

this process will heavily depend on the coherence and the structure of the data to analyze.

Let us assume we want to translate a text written in English language to Arabic and we

have a large aligned bilingual corpus English-Arabic meaning thousands of English examples with

their respective translation, Many MT approaches use a statistical model, which relies heavily on

counting the number of occurrences of a token in order to predict its translation.

This would have complications when dealing with languages like Arabic language for example:

Arabic (لسيارته))السيارة()سيارة()سيارته(

English (for his car) (his car) (car) (the car)

The Algorithm will assume that each token from the example above is a unique word but in fact,

it is a composition of words:

ه (\سيارة \)ل (for / his / car)

NMT systems will be affected more with this problem since it usually operates on closed

vocabulary corpus meaning it assumes a fixed vocabulary size, since it embeds each word of the

vocabulary to a sequence on bits (word embedding).

This would affect the performance of the translation significantly if not addressed properly.

Segmentation has the potential to solve this particular issue, which will improve the

training data quality, and by extension, the performance of the algorithms applied on it.

Chapter two Text Segmentation

19

2.3. Challenges to text segmentation

What makes segmentation a challenging task is the fact that there are many factors to

take in consideration when developing an algorithm for text segmentation.

 In the next section, we will emphasize on the main types of issues that we must address when

devolving such algorithms.

2.3.1. Language dependency

When talking about text segmentation we mainly focus on written languages that have an

established writing system this is an important distinction because there are thousands of spoken

languages and dialects but only small percentage of them have a system of symbols and rules

representing the information in said language.

Languages can be categorized into Logographic; where each symbol represents a word

resulting in a language having thousands of unique characters, syllabic in which symbols

represent syllables, or alphabetic in which symbols are a representation of sounds, most modern

language writing systems uses a combination of types so no writing can be classified as purely

alphabetic , syllabic , logographic [9].

Adding to the diverse symbol types used in writing systems languages often use some

sort of orthographical rules to denote the boundaries between linguistic units, for example English

language uses white space to indicate word boundaries ,punctuation marks like (, . ; :) to

indicate sentence boundaries making English a fairly easier text to segment, on the other hand

languages like Arabic and Japanese don’t have explicit markers for words and sentence

boundaries for example) ذهبنا للمتجر) which translate to (we went to the store) as we can see it

is much harder to indicate the word boundaries in an Arabic script

This wide variety of writing systems complicates the process of text segmentation since

we have to take in consideration all these language-specific and orthography-specific features in

order to achieve a proper segmentation meaning each technique is going to be heavily dependent

on the language it was developed for.

Chapter two Text Segmentation

20

2.3.2. Data dependency (Corpus dependency)

The robustness of NLP systems is considered a problem since these systems need a well-

formed input with a predefined structure for them to perform well.

Large corpora that includes multiple sources (newswire, emails, OCR data, social networks data)

usually contains misspelling, erratic spacing and punctuation causing algorithms that requires a

well-formed input to be much less successful on these texts, this is why it became clear that we

need to develop segmentation algorithms capable of handling such irregularities.

2.3.3. Text segmentation evaluation

Evaluating and comparing segmentation algorithms very difficult because an algorithm

may perform well on a specific corpus and not be successful on another, in other words an

algorithm fine-tuned for a specific language (A) will most likely be inapplicable on language (B) ,

however there are some common evaluation algorithms for word and sentence segmentation that

give information on their performance.

Word segmentation performance is usually measured with recall and precision where

recall is defined as the percent of words in the manually segmented text identified by the

segmentation algorithm [9], and precision is the percentage of words returned by the algorithms

that occur in the same position as in the reference-segmented text.

 Sentence segmentation performance score on the other hand is a single score equal to

the number of punctuation marks correctly classified divided by the total number of punctuation

marks.

So even with these evaluation algorithms it is only possible to compare between text

segmentation algorithms only when applied on the same benchmark corpus that means in real

world application we cannot know which algorithms will perform better only after testing it.

Chapter two Text Segmentation

21

2.4. Related works:

Arabic word segmentation is considered as part of POS tagging problem [10], There have

been many approaches conducted in the field of Arabic word segmentation the two main

categories are statistical and rule-based approaches.

Rule-based approaches such as Khoja [11], and more recently Hadni et al. [12], which

used a combination of lexicon and a predefined set of morphological rules to identify affixes and

clitics.

As for the statistical approaches two main strategies are used , the first is to consider the

segmentation as a classification problem and separate it from the POS tagging process then use

machine learning to train the classifiers, various techniques have been applied (SVM) like in the

work of A. Pasha et al. [13]. And k-nearest neighbor algorithm as in the work of M. Abdul-

Mageed, M. Diab, S. Kübler [14]. The second strategy is that the segmentation is conducted

during the morphological analysis, which contains the segmentation information and the POS

tagging, an example to this is the work of Habash and Rambo [15] in which they used the SVM

to choose the best solution. Zalmout and habash[16] used BI-LSTM taggers with various

embedding levels to perform the morphological analysis.

Other studies have used DNNs to perform word segmentation, a configuration of RNNs

using BI-LSTM cells have been used for Chinese word segmentation and POS tagging [17] the

reported experiments show F1 value above 97% which comparable to the state-of-art techniques

.

One of the recent work on Arabic word segmentation is Farasa [18] in which they break

the Arabic word into their constituent clitics based on SVM rank with linear kernels, taking in

consideration the likelihood of stems, prefixes, suffixes and their combination. Farasa uses

lexicons to solve the problem of rewriting during the segmentation, it was trained on different part

of ATB and tested on a corpus containing 70 wiki news articles achieving an F-1 score of 98.94.

Other works that focuses on Arabic segmentation is MADAMIRA [13] a morphological

analysis and disambiguation tool for Arabic text that combines the best features from its

predecessors, MADA (Habash and Rambow, 2005; Habash et al., 2009; Habash et al., 2013) and

AMIRA (Diab et al., 2007). It uses a streamlined java implementation making it faster and more

Chapter two Text Segmentation

22

robust than its predecessors, it achieved an F1- score of 99.1 on test data composed of 25k

words.

2.4.1 MADAMIRA:

MADAMIRA [13] follows the design shown in figure (2.2). First, the data must be

processed and transformed into Buckwalter format (see figure2.1) used within the MADAMIRA

tool, and then the data is passed to the morphological analysis component, which develops a list

of all possible analysis each word. The results are then passed to the feature-modelling

component in which SVM and Language models are used to predict the word’s morphological

features. SVM for closed class features and language models for open class features, an Analysis

ranking follows up which evaluates each word’s analysis and then ranks them based on their

score. The top ranked analysis is then passed to the tokenization component, which produce the

desired tokenization for the word based on the scheme selected by the user. The next component

Base phrase chunking is used to divide text into phrases and lastly Named Entity recognizer is

used to divide text into phrases and to mark and categorize named entities within the text.

Figure 2.1: Buckwalter format

MADAMIRA impresses with its 11 tokenization schemes including ATB, D3, D3_BWPOS

providing various segmentation option for the user to choose from. The word throughput for

MADAMIRA is rated at 1013 word/sec, which is considerably faster than the Previous AMIRA

system that tops at 255 words/sec.

Chapter two Text Segmentation

23

Figure 2.2: Overview of MADAMIRA Architecture (adapted from [13])

2.4.2 Ferasa

Ferasa is an Arabic word segmenter based on SVM-rank with the use of linear kernels

[19] it claims to be on part with state-of-art Arabic segementers (MADAMIRA and Stanford) while

being significantly faster and more efficient.

Ferasa uses a set of conditional probability to determine prefixes and suffixes and stems

as for any given word it extracts all character level segmentation possibility leading to a sequence

of segments as shown in figure (2.3):

Figure 2.3: Ferasa sequence structure

Chapter two Text Segmentation

24

These prefixes and suffixes are predefined as follows:

- Valid prefixes: f, w, l, b, k, Al, s. (ف, و, ال, ب, ك, ل, س).

- Valid suffixes: : A, p, t, k, n, w, y, At, An, wn, wA, yn, kmA, km, kn, h, hA, hmA, hm, hn,

nA, tmA, tm, tn (,ان,ون,وا,ين,كما,كم,كن,ه,هما,هم,هن,نا,تما,تما,تم,تن,ا,ة,ت,ك,ن,و,ي,ات).

Also it generates a list of possible prefix and suffix combination for example (وبالعلم) which contains

a prefix combination (و+ب+ال+علم) (w + b + al+Elm).

The learning process starts by constructing feature vectors for each possible

segmentation and marking the correct segmentation for each word, and then a SVM-rank

algorithm is used to learn features weights, during test all possible segmentation with valid

prefixes and suffixes are generated and then given a score by the classifier ranking them from

most likely to unlikely.

For training Ferasa used Parts 1,2 and 3 of the Penn Arabic Treebank (ATB), as for testing

it was done test set composed of 70 WikiNews articles (from 2013 to 2014) covering various

themes: politics, economics, health, science and technology, sports, art.

Ferasa achieved state-of-art F-1 score measured at 98.94% while being significantly faster than

its competitors like MADAMIRA (F-1 score 99.1%).

2.4.3 Stanford segmenter

Stanford segmenter [20] uses a single clitic segmentation model that is accurate on both

MSA and informal Arabic. It is an extension of the character-level conditional random field (CRF)

model of Green and DeNero (2012). It handles two Arabic orthographic normalization rules that

commonly require rewriting of tokens after segmentation. It also adds new features that improve

segmentation accuracy and shows that dialectal data can be handled in the framework of domain

adaptation. It also makes use of a simple feature called space augmentation (Daumé, 2007) that

yields significant improvements in task accuracy.

Green and DeNero use a linear-chain model with X as the sequence of input characters,

and Y∗ chosen according to the decision rule:

Chapter two Text Segmentation

25

Figure 2.4: decision rule for the Green and Denero model

Stanford segmenter is equipped to handles some Arabic-specific orthographic rewrites, as for

example the letter (ت) becomes (ة) when the word is segmented and it occurs on final position.

Green and DeNero is a third-order Markov CRF, employing the following indicator features:

- A five-character window around the current character.

- N-grams consisting of the current character and up to three preceding characters.

- Whether the current character is punctuation.

- Whether the current character is a digit.

- The Unicode block of the current character.

- The Unicode character class of the current character.

In addition to these, it includes two more features specific motivated by the errors in the original

system:

- Word length and position within a word

- First and last two characters of the current word, separately influencing the first two labels

and the last two labels

The segmenter was trained and evaluated on Arabic Tree Bank (ATB), the Broadcast news

treebank (BN), and Egyptian Arabic Treebank (ARZ), it achieved the following results:

- F1 score of 98.24- 97.39 – 92.09 in (ATB, BN, ARZ) respectively.

- TEDEval score of 98.74 – 98.29 – 92.32 in (ATB, BN, ARZ) respectively.

2.4.4. Byte Pair encoding (BPE)

Byte pair encoding (Gage, 1994) is a data compression technique that replaces the most

frequent pair of bytes in a sequence with a single unused byte.

It was adapted into the NMT field in the work of Rico Sennrich [21]; BPE addresses the out of

vocabulary Problem and enables NMT systems to perform open-vocabulary translation by

encoding rare and unknown words as sequences of sub-word units.

BPE operates as follows (See figure 2.5):

- Step 0: initializing the vocabulary of the corpus.

Chapter two Text Segmentation

26

- Step 1: represent each word of the corpus as a sequence of characters while marking the

word boundaries with special symbol that allows us the original tokenization after the

translation is done

- Step 2: iteratively count all symbol pairs and replace each occurrence of the most frequent

pair (‘A’, ‘B’) with a new symbol ‘AB’.

- Step 3: Merge every occurrence of the most frequent pair, add the new character n-gram

to the vocabulary.

- Step 4: Repeat step 3 until the desired number of merge operations are completed or

the desired vocabulary size is achieved.

Figure 2.5: Minimal Python implementation of BPE algorithm (adapted from [27])

To apply BPE on the data, first, each word is split to a sequence of characters; the trained

BPE model then applies the learned operations to merge the characters into larger, known

symbols. This is applicable to any word, and allows for open-vocabulary networks with fixed

symbol vocabularies.

Chapter two Text Segmentation

27

2.5 Evaluation metrics

2.5.1. Word segmentation evaluation

a- Precision, Recall, F-1 measure:

When evaluating a segmentation technique the standard is to calculate word level

precision, recall and their evenly weighted average F1-score to measure the performance of said

technique.

The correctly segmented words are regarded as true positives (TP), and the total words

returned by the segmenter are considered prediction positives (PP), to calculate the precision of

a technique we use this formula:

Precision= TP /PP ………….. (1)

As for recall function, we simply divide true positives (TP) by reference positives (RP) which is

the total number of words in the reference text:

Recall = TP/RP……………….. (2)

 The F-1 measure is a combination of both precision and recall into a single measurement

capturing both properties:

F-1 Measure = (2 * Precision * Recall) / (Precision + Recall) … (3

B- TEDEval

TEDEval is a novel metric for evaluating joint segmentation and parsing scenarios [22], it

uses distance-based metrics defined for the space of trees over lattices.

TEDEval uses a cost function that assigns a cost unit the possible actions ‘a’ (adding,

removing a lexeme) and then defines the cost of a sequence (a1… an) an editing script (ES)

performed on a tree Y2 (predicted segmentation) to transform it to Tree Y1 (reference

segmentation) as shown in the following formula:

Chapter two Text Segmentation

28

This cost is cosidred an error measurement which need to be normalized and transformed

into a score, assuming we have the predicted structure p and the gold structure g we can extract

and evaluation score using this formula:

The term |p| + |g| − 2 is a normalization factor defined in terms of the worst-case scenario,

in which the parser has only made incorrect decisions. We would need to delete all lexemes and

nodes in p and add all the lexemes and nodes of g, except for roots.

Chapter two Text Segmentation

29

2.5.2. Machine translation evaluation

BLEU score:

It is critical to have a valid comparative metric to help guide research and provide a way

to compare between outputs of different translation systems, however translation is an ambiguous

task, meaning even two professional human translators would most likely produce a different

translation to the same text. Adding to that not only we need to worry about matching words but

also their order some languages like Arabic for example have free word order meaning there

multiple valid orders to a sentence and knowing which is correct and not complicates the process

even more.

That is why researchers at IBM came up with metric that compromises between ignoring

and requiring matching word order, they called it BLEU. The idea behind BLEU score is that it

does not just count the matching words from the output and the reference but also larger order

N-grams [23] meaning it rewards the matching word order too (see figure (2.6)).

Figure 2.6: Example of matching N-grams

The BLEU metric uses a brevity penalty it is based on the ratio between the number of

words in the machine translation and reference translation.

The BLEU metric is defined as shown in the following formula:

Chapter two Text Segmentation

30

METEOR metric:

The METEOR [23] metric introduced a couple of novel ideas. One perceived flaw of BLEU

is that it gives no credit at all to near matches. Meaning if the system translates the Arabic word

 to (safe) but in the reference they used the word (safety) even though they have similar (الحماية(

meaning but blue score consider that translation to be a mismatch and gives no to credit to it.

However meteor by the use of stemming can match the correct segments (safe = safe+ty) and

acknowledge as a near miss.

Another way to detect near misses is using synonyms, or semantically closely related

words. Meaning if the system translates the Arabic word)الحماية) to the word (security) instead of

(safety) which is close in meaning may be irrelevant in bringing across the meaning of the

sentences and should not be penalized.

METEOR incorporates the use of stemming and synonyms by first matching the surface

forms of the words, and then backing off to stems and finally semantic classes. The latter are

determined using Wordnet, a popular ontology of English words that also exists for other

languages. The main drawback of METEOR is that its method and formula for computing a score

is much more complicated that BLEU’s. Linguistic resources such as morphological stemmers

and synonym databases are required. The matching process involves computationally expensive

word alignment. There are many more parameters – such as the relative weight of recall to

precision, the weight for stemming or synonym matches – that have to be tuned.

Chapter two Text Segmentation

31

2.7 Conclusion

One weakness of neural machine translation is its robustness concerning the training data.

The data must be formatted, cleaned, and structured adequately for it to be properly digested by

the neural network; as a result, the performance of these RNNs is tied directly to the quality of the

training data.

In this chapter, we talked about text segmentation (tokenization), and how it can drastically

improve the performance of the translation algorithms, and then we highlighted some of the main

challenges that faces text segmentation.

After that, we discussed some of the current state of the art segmentation techniques such

as MADAMIRA and Ferasa and we shared their benchmarks.

Then we finished the chapter with some of the evaluation metrics for both the

segmentation and the translation.

Chapter three Alignment-based Segmentation and results

32

Chapter 3 : Alignment-based

Segmentation and results

Chapter three Alignment-based Segmentation and results

33

3.1. The proposed method:

Most current text segmentation algorithms that are aimed toward Machine translation

relies on monolingual corpus in training, meaning it extracts all the necessary features and the

linguistic rules directly from the corpus of the languages intended for.

In this work, we want to propose a new method for text segmentation in which we make

use of parallel corpus in the training process to try to breach the gap between the source language

and the target language in the translation process. We theories that having a segmentation

scheme tailored specifically for a specific pair of languages would yield better translation results.

The idea revolves around three common concepts in the machine translation field. Text

Alignment, which is having each sentence from the source language side by side its translation

from the target language. And occurrence counting which is how many times a specific word from

source language is translated to the same word from the target language. Lastly, vocabulary size

manipulation, a corpus vocabulary is the set of unique words used in the text corpus; it can also

be character-based (e.g. each letter).

Our technique uses mentioned concepts to perform the segmentation, first we start by

separating the characters on the Arabic side so that we have each letter by itself for example:

 Then we align the training data, in our case an Arabic- English .(ا ل م د ر س ة) becomes (المدرسة)

parallel corpus. Then Next step is to count the occurrences of sequences of Arabic characters

that aligns with complete English words and sort them based on their frequency from highest to

lowest. This would help us extract and filter the phrases from the Arabic side of the corpus that

match complete words from the English side of the corpus, and then we train BPE model on the

extracted phrases to joint those sequences of characters.

In short, we want to joint Arabic sequence of characters, which have one English word

aligned with consistency. See figure (3.1) for an overview of Alignment-based Segmentation

technique.

Chapter three Alignment-based Segmentation and results

34

Figure 3.1: flowchart representing an overview for the proposed method

Chapter three Alignment-based Segmentation and results

35

3.2. Used Hardware and Software:

A. hardware:

Most of our experiments are conducted on a desktop computer with the following specifications:

- CPU: AMD Ryzen 5 2600x series 6 cores / 12 threads running at 4.0 GHZ

- GPU: Nvidia GeForce 1070ti with 8 GB of ddr5 Vram and 2432 CUDA cores

- Memory: 16 GB of dual channel RAM running at 3200 MHZ

- Storage: 128 GB M.2 nvme SSD + 1000 GB HDD + 500 GB SSD

B. software:

 Throughout our experiments, we used various software and tools and programming languages

all running on Linux OS

- OS: Linux Ubuntu 18.04 LTS

For the segmentation:

Our segmentation algorithm is implemented using python with the use of other softwares such as

- fast-align: which is a simple, fast, unsupervised word aligner.

- sentence piece: to apply BPE algorithm

- giza aligner: used for alignment

- moses: collection of language processing tools

For translation:

We used Open-NMT1 to create translation models; it is an open source ecosystem for

neural machine translation and neural sequence learning. Open-NMT Started in December 2016

by the Harvard NLP group and SYSTRAN.

1 https://opennmt.net/

Chapter three Alignment-based Segmentation and results

36

3.3 Used Data:

Our training and testing was conducted on TED talks parallel corpora.

TED parallel Corpora is growing collection of Bilingual parallel corpora, Multilingual parallel

corpora and Monolingual corpora extracted from TED talks2 for 109 world languages. It includes

Monolingual corpus, 12 languages for Bilingual parallel corpus over 120 million aligned sentences

and 13 languages for Multilingual Parallel corpus with more than 600k sentences. The goal of the

extraction and processing was to generate sentence-aligned text for machine translation systems.

We use the official IWSLT 2017 evaluation campaign Data. The transcripts are given as

pure text (UTF8 encoding), one or more sentences per line, and are aligned (at language pair

level, not across pairs).

The Arabic-English corpus we used is composed of about 400k sentences (see tables bellow)

Data set Sentences tokens

Arabic English

Training 400,000 3,400,000 4,200,000

Validation 1830 20,000 26,000

Testing(IWSLT17.TED.tst2014) 1316 18,000 21,000

Table 3.1: Summary of statistics of the training and test data

 Arabic side English side

Rank Token occurrence Coverage (%) Token occurrence Coverage (%)

 The 198181 4.72 2.87 98929 في 1

 And 142978 3.40 2.49 85804 من 2

 To 117732 2.80 1.37 47220 أن 3

 Of 109176 2.60 1.21 41871 على 4

 A 100429 2.39 1.12 38636 و 5

 That 76710 1.83 0.85 29426 هذا 6

 In 73816 1.76 0.73 25060 ما 7

 I 61580 1.47 0.68 23349 هذه 8

2 www.ted.com

Chapter three Alignment-based Segmentation and results

37

 Is 58992 1.40 0.66 22784 لا 9

 you 55564 1.32 0.59 20426 هو 10

Table 3.2: some statistics about the Arabic vocabulary

3.4. Implementation details

3.4.1. Character separation:

The first thing we wanted to do is reduce the vocabulary size of the Arabic side of the

corpus, meaning we separate the Arabic characters from each other so that we have each letter

by itself. Then we mark the words boundaries so that we be able retrieve the original data ones

the process is done and to do that we simply insert ‘#’ at the start of each word see figure 3.2 for

an example.

Figure 3.2: format of the training data

And to do that we used the command ‘sed’. SED command in UNIX is stands for stream

editor and it can perform lots of function on file like, searching, find and replace insertion or

deletion:

3.4.2 Performing the Alignment:

The next step is to perform the alignment. Most of the text alignment implementations are

based on the Expectation Maximisation Algorithm.

Assuming we have a pair of language (A-B) we start by aligning language B according to

language A meaning token in position ‘1’ in the A language side is aligned with ‘n’ tokens from

the side of language B.

Then we do the opposite we align language A according to language B so that we have for

example tokens ‘m’ from language A side are aligned with the token in position ‘1’ on the B

language side.

Chapter three Alignment-based Segmentation and results

38

Finally, we combine both ways alignments to get the alignment output ‘m, n’.

In our experiments we used fast align [24]. Its input must be tokenized and aligned into

parallel sentences. Each line is a source language sentence and its target language translation,

separated by a triple pipe symbol with leading and trailing white space (|||). See figure 3.4

 Figure 3.3: Fast align input format

Fast align generates asymmetric alignments, by treating either the left or right language

in the parallel corpus as primary language being modelled. To generate source–target (left

language–right language) we simply use the following command:

Fast align produces outputs in the widely used i-j “Pharaoh format,” where a pair i-j

indicates that the ith word (zero-indexed) of the left language (by convention, the source language)

is aligned to the jth word of the right sentence (by convention, the target language).

Figure 3.4: Fast align output format

Chapter three Alignment-based Segmentation and results

39

3.4.3. Phrase Extraction and filtering:

We use the alignment output to align segments from the Arabic side that match complete

words from the English, this would help us see which Arabic characters can be reliably merged.

To be able to see repetitive alignments so that we can extract phrases we sorted the resulted

alignments by their frequency from highest to lowest see table (3.3) for an example.

Order Alignments Frequency

1 in ||| 3492 ف ي

2 this||| 3349 ه ذ

3 on ||| 3287 ل ى

4 now||| 1961 ل آ

5 like ||| 1335 ث ل

6 So ||| 988 ل ذ

7 things ||| 523 ش ي ا ء

8 part ||| 517 ج ز ء

9 still ||| 408 ز ا ل

10 said ||| 361 ق ا ل

11 person ||| 295 ش خ ص

Table 3.3: The Table of phrases with their frequencies

Our alignment file contained more than 6 million alignments of which only about 100k had

a frequency above five, we only focused on repeated alignments.

What we want here is to extract all the phrases from the Arabic side that matches complete words

from the English side while having high frequency.

We filtered out all the alignments that occurred less than 5 time and the alignments that contained

more than one word on the English side, and also all the alignment that had end of word marker.

3.4.4. Training and Applying BPE:

Byte pair encoding is a simple data compression technique, the idea behind it is to

iteratively replace the most frequent pair of bytes with an unused byte, and this idea was adapted

into word segmentation algorithms by merging the most frequent pair of characters or sequence

of characters.

The reason we wanted to trained BPE model on the extracted phrases is so that when applying

the BPE on the training data it would merge the characters based on the aligned phrases from

the table.

Chapter three Alignment-based Segmentation and results

40

We start by training the modified BPE model on the extracted phrases using the following

command:

We trained two different BPE models: Alignment-based model (our technique) and monolingual

(standard BPE). We modified Sennrich’s BPE [21] implantation to support the alignment input (see the

appendix for the most relevant parts of the algorithm).

As you can see, the phrases from alignment-based model and the monolingual are quite different.

After that we simply apply the models on the training data and use it to train the NMT system

Table 3.4: comparative table between the Alignment-based BPE model and standard BPE model

Alignment-based model Monolingual model
 أص بحت أصبح ت
 أنفس نا أن فس
 ا ستخدام ا ستخدام
 اق تصا إق تصاد
 بالط بع بال طبع
 بالف عل بال فعل
 ص غيرة صغير ة
 ص ورة صور ة
 طري قة طريق ة
 ع ظيم عظ يم
 ص لشخ ل شخص
 ذا له ل هذا

Chapter three Alignment-based Segmentation and results

41

3.5. Experiments and results:

3.5.1. Our Neural machine configuration:

To test our segmentation we trained multiple neural networks using Open-NMT.py to

perform translation between Arabic and English language. Training such Networks requires a lot

of resources and it is very sensitive to hyper-parameters. To find the correct configuration

experiments must be conducted.

To give you an idea on how much resources it takes to train state of the art NMT systems see the

table below.

Rank Model Training time

1 Transformer 3 days on 8 GPUS

2 SliceNet 6 days on 32 GPUS

3 GNMT 1 day on 96 GPUS

Table 3.5: training duration of state of the art NMT models

Choosing the correct configuration for the training is challenging task in itself we had to balance

between the performance of the system and the training duration

After many experiments, we settled on the following the configuration see figure 3.5:

Figure 3.5: translation model configuration

Chapter three Alignment-based Segmentation and results

42

Since our hardware contains only one GPU, to be able to conduct multiple experiments

we had to settle for a small neural network containing two layer LSTM with 500 hidden units on

both the encoder and decoder trained for a maximum of 200k steps.

When training the model with different types of data we had various convergence rates

depending on the data some reached their best result before the trained was completed, we

noticed that after 100k steps many models suffered from over fitting. However, since we can save

checkpoints, we can simply take the checkpoint with the best performance and stop the training

if we see no improvement after a specific number of steps.

200k steps equates to approximately 8 hours of training with the configuration mentioned

above, some models took about 5 hours to reach their best performance some showed no sign

of convergence even after 20 hours.

The Table below shows the training duration of some of the models we trained with different

processing on the training data

Data type Training steps (best

checkpoint)

Duration

Bpe (4k-4k-i) 95000 3h 49min

Bpe(4k-4k) 110000 4h 1min

raw 200000 8h

segchar 200000 8h

Table 3.6: Training duration for some of our experiments

3.5.2 English to Arabic translation results:

We performed 12 different experiments on English to Arabic translation; we tested multiple

types of data and reported the performance of the translation using BLEU metric.

Our first set of experiments was to try to find which vocab size works best for our model

so we performed BPE on our data in multiple configuration and reported the BLEU score of each.

We did this to set a baseline to compare our results.

Chapter three Alignment-based Segmentation and results

43

Language /vocab size Arabic/ 4k Arabic/8k Arabic/16k

English/ 4k 9.52 % 9.69 % 9.58 %

English/8k 7.67 % 7.73 % 6.17 %

English/16k 9.33 % 9.64 % 9.71 %

Table 3.7: the impact of vocab size on the translation performance for BPE algorithm

From what we can see the 4K and the 16K combinations performed well achieving the

highest results on average (16K-16K scored 9.71 and 4K-4K scored 9.58), however it seems that

when selecting 8K vocab size on the English side the results drop significantly as low as 6.17 in

the case of 16K-8K.

 In the next set of experiments, we are going to put our technique Parallel alignment segmentation

to the test with the best performing configuration of BPE:

For the sake of simplicity when naming the data types, we chose this format [name of the

technique (size of the source language EN vocab-- size of target language AR vocab)].

Model name Data type BLEU score

m-raw Raw (non-processed) 5.34

m-bpe-4k4k BPE(4k-4k) 9.52

m-bpe-16k-16k BPE(4k-16k) 9.71

m-bpe-4k-8k BPE(8k-4K) 7.67

m-ABS (our technique) ABS(4K-4k) 8.09

Table 3.8: performance comparison between our technique and BPE with different configurations (English to Arabic)

Chapter three Alignment-based Segmentation and results

44

Figure 3.6: Comparative chart (English to Arabic)

As we can see from the result table and the comparative chart our segmentation technique

did improve the translation performance compared to the raw data model and some of the BPE

configurations, however it fell short of reaching the performance of the best configuration 4K/ 16K

of the BPE technique.

BLEU score indicates the overall performance of the model, it is calculated over the

entirety of the test data set which includes over 1000 sentence, meaning if a model has a higher

score than another that doesn’t mean that it translated all the test examples better.

9
.7

1

9
.5

2

8
.0

9

7
.6

7

5
.3

4

M - B P E - 1 6 K - 1 6 K M - B P E - 4 K 4 K M - A B S (O U R
T E C H N I Q U E)

M - B P E - 4 K - 8 K M - R A W

BLEU SCORE

Chapter three Alignment-based Segmentation and results

45

3.5.3. Arabic to English translation results:

We wanted to test our segmentation technique in both ways to see how it performs so we trained

our model to translate from English to Arabic too.

The next set of experiments follows the same structure of the previous one the only difference now is

that Arabic is the source language and English is the target one.

[Model name (size of vocab source language AR -- size of vocab in the target language EN)].

Model name Data type BLEU score

m-raw Raw (non-processed) 13.25

m-bpe-4k4k BPE(4k-4k) 19.62

m-bpe-16k-16k BPE(4k-16k) 20.97

m-bpe-4k-8k BPE(8k-4K) 15.31

m-parallel(our technique) ABS(4k-4k) 18.89

Table 3.9: performance comparison between our technique and BPE with different configurations (English to Arabic)

Figure 3.7: Comparative chart (English to Arabic)

2
0

.9
7

1
9

.6
2

1
8

.8
9

1
5

.3
1

1
3

.2
5

M - B P E - 1 6 K - 1 6 K M - B P E - 4 K 4 K M - A B S (O U R
T E C H N I Q U E)

M - B P E - 4 K - 8 K M - R A W

BLEU SCORE

Chapter three Alignment-based Segmentation and results

46

As we can see it is much easier to translate from Arabic to English than the way around,

the BLEU score of all the models is significantly higher.

We also notice the same pattern as the previous experiment our model scored 18.89

improving upon the raw model and 4k-8k BPE configuration, but again fails to outperform BPE’s

best configurations.

We assume that the reason our technique did not match the BPE is because in our

technique operates only on one side the corpus (Arabic). We think if we can include the English

side as well in the process we might be able to improve the performance of ABS, this requires

further experiment to confirm.

3.6. Conclusion:

In this chapter, we first introduced our proposed method and detailed all the steps involved

in its implementation, our Parallel Alignment segmentation (PAS) technique aims to joint Arabic

sequence of characters, which have one English word aligned with consistency.

Then, we detailed our NMT model configuration and how it was implemented, and then

we gave information about the data we used in training and testing.

After that, we showed our experiments results, which demonstrates the performance of

our technique and puts it in comparison with BPE algorithm, our technique (ABS) showed decent

performance, however it fell short when compared to BPE best configurations.

Finally, we gave some assumptions on how we can improve our technique.

Chapter four General Conclusion and future works

47

Chapter 4 : General conclusion and

future works

Chapter four General Conclusion and future works

48

General conclusion

Achieving human like language processing is what NLP field researchers strive for,

developing a system capable of understanding human natural language with all its ambiguity,

irregularity, and diversity is no simple feat that we are yet to reach it.

 In This work, we explored the task of Machine translation which one of the most important

tasks of NLP, we highlighted its mechanism, challenges, and dependencies. There have been

many approaches to MT starting from rule-based techniques (RBMT) all the way to recent neural

machine translation (NMT) with each having its own limitations and advantages.

 What all these techniques have in common and especially NMT systems is their reliance

on the quality of the training data, having a large, well-structured data set with rich vocabulary

about a specific language would in fact improve that performance of the translation model.

 Parallel corporal are commonly used data structure when it comes to NMT, which comes

in the form of sentence pairs, a source sentence and its translation. In our case, we chose the

pair English-Arabic since Arabic is a good example of a morphological rich language and English

is the most used languages online.

 In this work, we studied the impact of pre-processing on the performance of Arabic neural

machine translation. We introduced our Alignment-based segmentation technique (ABS) and

tested its performance in various experiments, we report that our technique improves the

translation performance and even outperform BPE in some cases however did not match BPE

best performing configuration.

 We managed to implement a segmentation technique (ABS) that in fact did improve the

performance of the NMT system. However, it is still in need of improvement so as follow up to this

work we want to add a proper segmentation process to the English side of the corpus and perform

Chapter four General Conclusion and future works

49

more experiments to fine tune our technique, we also want to test our technique with more

sophisticated NMT models such as transformer and GNMT models.

We would also want to point out that more data is needed when it comes to Arabic

corporal, having more training data is a necessity if we want to push forward the Arabic neural

machine translation.

50

Bibliography:

[1] Shaalan, K. (2010). Nizar Y. Habash, Introduction to Arabic natural language processing

(Synthesis lectures on human language technologies). Machine Translation, 24(3-4), 285–289.

https://doi.org/10.1007/s10590-011-9087-8

[2] Guellil, I., Saâdane, H., Azouaou, F., Gueni, B., & Nouvel, D. (2019). Arabic natural language

processing: An overview. Journal of King Saud University - Computer and Information Sciences.

https://doi.org/10.1016/j.jksuci.2019.02.006

[3] Farghaly, A., & Shaalan, K. (2009). Arabic Natural Language Processing. ACM Transactions

on Asian Language Information Processing, 8(4), 1–22. https://doi.org/10.1145/1644879.1644881

[4] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Dean, J. (2016, October

8). Google's Neural Machine Translation System: Bridging the Gap between Human and Machine

Translation. arXiv.org. https://arxiv.org/abs/1609.08144.

[5] Farghaly, A., & Shaalan, K. (2009). Arabic Natural Language Processing. ACM Transactions

on Asian Language Information Processing, 8(4), 1–22. https://doi.org/10.1145/1644879.1644881

[6] Sawalha, M., Atwell, E., & Abushariah, M. A. M. (2013). SALMA: Standard Arabic Language

Morphological Analysis. 2013 1st International Conference on Communications, Signal

Processing, and Their Applications (ICCSPA). https://doi.org/10.1109/iccspa.2013.6487311

[7] Koehn, P. (2020). Neural machine translation. Cambridge University Press.

[8] Pak, I., & Teh, P. L. (2017). Text Segmentation Techniques: A Critical Review. Innovative

Computing, Optimization and Its Applications Studies in Computational Intelligence, 167–181.

https://doi.org/10.1007/978-3-319-66984-7_10

[9] Dale, R., Moisl, H., & Somers, H. (2000). Handbook of natural language processing. Dekker.

Chapter 2: Tokenisation and Sentence Segmentation

[10] Almuhareb, A., Alsanie, W., & Al-Thubaity, A. (2019). Arabic Word Segmentation With

Long Short-Term Memory Neural Networks and Word Embedding. IEEE Access, 7, 12879–

12887. https://doi.org/10.1109/access.2019.2893460

[11] Khoja, S. (2001). APT: Arabic part-of-speech tagger.

[12] Hadni, M., Ouatik, S. A., Lachkar, A., & Meknassi, M. (2013). Hybrid Part-Of-Speech Tagger

for Non-Vocalized Arabic Text. International Journal on Natural Language Computing, 2(6), 1–

15. https://doi.org/10.5121/ijnlc.2013.2601

[13] Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Eskander, R., Habash, N., … Roth, R.

(2014). MADAMIRA: A Fast, Comprehensive Tool for Morphological Analysis and

51

Disambiguation of Arabic. ACL Anthology, Proceedings of the Ninth International Conference on

Language Resources and Evaluation (LREC'14), 1094–1101.

[14] Abdul-Mageed, M., Diab, M., & Kübler, S. (2013). ASMA: A System for Automatic

Segmentation and Morpho-Syntactic Disambiguation of Modern Standard Arabic. ACL

Anthology, Proceedings of the International Conference Recent Advances in Natural Language

Processing RANLP, 1–8.

[15] Habash, N., & Rambow, O. (2005). Arabic tokenization, part-of-speech tagging and

morphological disambiguation in one fell swoop. Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics - ACL '05. https://doi.org/10.3115/1219840.1219911

[16] Zalmout, N., & Habash, N. (2017). Don’t Throw Those Morphological Analyzers Away Just

Yet: Neural Morphological Disambiguation for Arabic. ACL Anthology, Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, 704–713.

[17] Zalmout, N., & Habash, N. (2017). Don’t Throw Those Morphological Analyzers Away Just

Yet: Neural Morphological Disambiguation for Arabic. ACL Anthology, Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, 704–713.

[18] Darwish, K., & Mubarak, H. (2016). Farasa: A New Fast and Accurate Arabic Word

Segmenter. Proceedings of the Tenth International Conference on Language Resources and

Evaluation (LREC'16), 1070–1074.

[19] Abdelali, A., Darwish, K., Durrani, N., & Mubarak, H. (2016). Farasa: A Fast and Furious

Segmenter for Arabic. Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Demonstrations. https://doi.org/10.18653/v1/n16-

3003

[20] Monroe, W., Green, S., & Manning, C. D. (2014). Word Segmentation of Informal Arabic

with Domain Adaptation. Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers). https://doi.org/10.3115/v1/p14-2034

[21] Sennrich, R., Haddow, B., & Birch, A. (2016). Neural Machine Translation of Rare Words

with Subword Units. Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). https://doi.org/10.18653/v1/p16-1162

[22] Tsarfaty, R., Nivre, J., & Andersson, E. (2012). Joint Evaluation of Morphological

Segmentation and Syntactic Parsing. Proceedings of the 50th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), 6–10.

[23]Koehn, P. (2020). Neural machine translation. Cambridge: Cambridge University Press.

https://doi.org/10.18653/v1/n16-3003
https://doi.org/10.18653/v1/n16-3003

52

[24] Dyer, C., Chahuneau, V., & Smith, N. A. (2013). A Simple, Fast, and Effective

Reparameterization of IBM Model 2. Proceedings of the 2013 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, 644–

648.

[25] Khan Jadoon, N., Anwar, W., Bajwa, U.I. et al. Statistical machine translation of Indian

languages: a survey. Neural Comput & Applic 31, 2455–2467 (2019).

https://doi.org/10.1007/s00521-017-3206-2

 [26] Peter F. Brown, John Cocke (1990). statiscal approach to machine translation. Computational

linguistics

https://doi.org/10.1007/s00521-017-3206-2

53

Appendix:

def learn_bpe(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False, tot
al_symbols=False, num_workers=1, no_bow=False,count_cvt=int):
 """Learn num_symbols BPE operations from vocabulary, and write to outfile.
 """

 outfile.write('#version: 0.2\n')

 vocab = get_vocabulary(infile, is_dict, num_workers,count_cvt)
 if no_bow:
 vocab = dict([(word2tuple(x) ,y) for (x,y) in vocab.items()])
 else:
 vocab = dict([(tuple(x[:-1])+(x[-1]+'</w>',) ,y) for (x,y) in vocab.items()])
 sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True)

 stats, indices = get_pair_statistics(sorted_vocab)
 big_stats = copy.deepcopy(stats)

 if total_symbols:
 uniq_char_internal = set()
 uniq_char_final = set()
 for word in vocab:
 for char in word[:-1]:
 uniq_char_internal.add(char)
 uniq_char_final.add(word[-1])
 sys.stderr.write('Number of word-
internal characters: {0}\n'.format(len(uniq_char_internal)))
 sys.stderr.write('Number of word-
final characters: {0}\n'.format(len(uniq_char_final)))
 sys.stderr.write('Reducing number of merge operations by {0}\n'.format(len(uniq_char_i
nternal) + len(uniq_char_final)))
 num_symbols -= len(uniq_char_internal) + len(uniq_char_final)

 # threshold is inspired by Zipfian assumption, but should only affect speed
 threshold = max(stats.values()) / 10
 for i in range(num_symbols):
 if stats:
 most_frequent = max(stats, key=lambda x: (stats[x], x))

 # we probably missed the best pair because of pruning; go back to full statistics
 if not stats or (i and stats[most_frequent] < threshold):
 prune_stats(stats, big_stats, threshold)
 stats = copy.deepcopy(big_stats)
 most_frequent = max(stats, key=lambda x: (stats[x], x))
 # threshold is inspired by Zipfian assumption, but should only affect speed
 threshold = stats[most_frequent] * i/(i+10000.0)
 prune_stats(stats, big_stats, threshold)

 if stats[most_frequent] < min_frequency:
 sys.stderr.write('no pair has frequency >= {0}. Stopping\n'.format(min_frequency))
 break

 if verbose:
 sys.stderr.write('pair {0}: {1} {2} -
> {1}{2} (frequency {3})\n'.format(i, most_frequent[0], most_frequent[1], stats[most_frequent]
))

54

 outfile.write('{0} {1}\n'.format(*most_frequent))
 changes = replace_pair(most_frequent, sorted_vocab, indices)
 update_pair_statistics(most_frequent, changes, stats, indices)
 stats[most_frequent] = 0
 if not i % 100:
 prune_stats(stats, big_stats, threshold)

def replace_pair(pair, vocab, indices):
 """Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'"""
 first, second = pair
 pair_str = ''.join(pair)
 pair_str = pair_str.replace('\\','\\\\')
 changes = []
 pattern = re.compile(r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)')
 if sys.version_info < (3, 0):
 iterator = indices[pair].iteritems()
 else:
 iterator = indices[pair].items()
 for j, freq in iterator:
 if freq < 1:
 continue
 word, freq = vocab[j]
 new_word = ' '.join(word)
 new_word = pattern.sub(pair_str, new_word)
 new_word = tuple(new_word.split(' '))

 vocab[j] = (new_word, freq)
 changes.append((j, new_word, word, freq))

 return changes

