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I 
 

 

Abstract: 

 

Data driven methods have become the way to go when it comes to NLP, especially in the 

case of machine translation, with the rise of neural machine translation, a new method that 

incorporates the use of recurrent neural networks. These NMT systems are very sensitive to the 

quality the training data; a large rich well-structured data set can make huge difference in the 

performance of the translation. 

This work aims to study the impact of preprocessing on the performance of Arabic-English 

Neural Machine Translation Systems. We limit our research on the effect of text segmentation. 

 We introduce a new alignment-based segmentation technique that tries to address the issue 

of translating from and into the Arabic language. We perform multiple translation experiments in 

which we use different Segmentation methods. Our results shows that preprocessing the training  

data improves the performance of the NMT model. We also report that our technique improves the 

translation performance and even outperform BPE in some cases, however did not match BPE best 

performing configuration.  

Key words: NLP, machine translation, NMT, segmentation, BPE, alignment, data preprocessing, 

Arabic translation.  
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 :ملخص

 

ة الطبيعية ، أصبحت الأساليب المعتمدة على البيانات هي الطريق الذي يجب اتباعه عندما يتعلق الأمر بمعالجة اللغ

ت العصبية الترجمة الآلية العصبية ، وهي طريقة جديدة تتضمن استخدام الشبكا خاصة في حالة الترجمة الآلية ، مع ظهور

يدة التنظيم أن حساسة للغاية لجودة بيانات التدريب ؛ يمكن لمجموعة كبيرة غنية من البيانات ج NMT المتكررة. تعتبر أنظمة

 .تحدث فرقاً كبيرًا في أداء الترجمة

بية إلى الإنجليزية. الجة المسبقة على أداء أنظمة الترجمة الآلية العصبية من العريهدف هذا العمل إلى دراسة تأثير المع

 .نحن نحد من بحثنا حول تأثير تجزئة النص

. أجرينا تجارب ترجمة تقنية تجزئة جديدة قائمة على المحاذاة تحاول معالجة مسألة الترجمة من وإلى اللغة العربيةقدمنا   

بشكل ملحوظ.  NMT ق تجزئة مختلفة. تظهر نتائجنا أن المعالجة المسبقة للبيانات تحسن أداء نموذجمتعددة استخدمنا فيها طر

أفضل   علىتفوق ي في بعض الحالات ، ومع ذلك لم  BPE أبلغنا أيضًا أن أسلوبنا يعمل على تحسين أداء الترجمة بل ويتفوق على

 BPE .تكوين

ة المسبقة للبيانات ، ، المحاذاة ، المعالج BPE، التجزئة ،  NMT، الترجمة الآلية ، المعالجة الآلية للغة   الكلمات الأساسية:

 الترجمة العربية
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Résumé: 

               Les méthodes basées sur les données sont devenues la voie à suivre en matière de 

traitement du langage naturel, en particulier dans le cas de la traduction automatique, avec l'essor 

de la traduction automatique neuronale, une nouvelle méthode qui intègre l'utilisation de réseaux 

de neurones récurrents. Ces systèmes NMT sont très sensibles à la qualité des données de 

formation; un vaste ensemble de données riches et bien structurées peut faire une énorme 

différence dans les performances de la traduction. 

              Ce travail vise à étudier l'impact du prétraitement sur les performances des systèmes de 

traduction automatique neuronale arabe-anglais; nous limitons nos recherches sur l'effet de la 

segmentation du texte. 

               Nous avons introduit une nouvelle technique de segmentation basée sur l'alignement qui 

tente de résoudre le problème de la traduction depuis et vers la langue arabe. Nous avons effectué 

plusieurs experimentations de traduction dans lesquelles nous avons utilisé différentes méthodes 

de segmentation. Nos résultats montrent que le prétraitement des données améliore 

considérablement les performances du modèle NMT. Nous signalons également que notre 

technique améliore les performances de traduction et même surpasse BPE dans certains cas, mais 

ne correspond pas à la configuration la plus performante de BPE. 

Mots clés: traitement du langage naturel, traduction automatique, NMT, segmentation, BPE, 

alignement, prétraitement des données, traduction Arabe. 
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1.1. Introduction 
 

One of the most important aspects of human beings is their ability to collaborate to achieve 

great feats. Such collaboration is only possible because of our ability to share knowledge through 

communication. There are many ways of communication with each other whether it is through 

speech, text, signals, signs etc.  

Although it might seem that communicating is a simple task for us humans, the ability to 

understand speech or the ability to read a written text off a screen and comprehend the meaning 

behind it is far from simple. We are yet to understand the full mechanisms behind this process. 

So how do we achieve human-like processing of languages? 

Natural Language Processing (NLP) has been the answer to this problem with the goal of 

achieving human-like processing of languages. 

Moreover, since most of the knowledge and data nowadays is online, having it accessible 

to all is vital, and one major issue is the language barrier due to the existence of so many 

languages across the globe. For a long time people used human translators (those who master 

two or more languages) but this solution is expensive and time consuming so another faster and 

cheaper solution was necessary, this necessity lead scientists to develop to Machine Translation 

(MT).   

While translation is easy to achieve with pairs of language that are closely related and 

have similar morphology and rules  like English-French and Spanish-Italian ,Languages that differ 

a lot from each other in morphology and rules of composition like for example the pairs Arabic-

English or Chinese-Russian  adds another layer of complication to the translation process [1] . 

Arabic for example is the fourth most used language [2] on the internet and it is spoken 

by more than 400 million person globally, and used by 1.4 billion Muslim to recite Quran and 

perform their prayers. It has a huge vocabulary, rich morphology and a complicated sentence 

composition, making it a difficult language to translate from and to. This calls for special pre-

processing measurements to be performed on the Arabic text for it to be well segmented and 

disambiguated for it to be easily digested by the translation algorithms resulting in an overall better 

translation performance. 

 



Chapter one                                                                                                                                  Introduction  
 

3 
 

1.2. Natural Language Processing (NLP) 
 

Natural language processing is a sub-field of Artificial Intelligence, which incorporates the 

use of machine learning and computational linguistics; it focuses on achieving human-like 

processing of natural language. [3] it is composed of multiple systems that work together to create 

an end-to-end interaction between human and machine in human natural language. 

In the early days of AI, NLP was believed to be interchangeable to (NLU) Natural 

Language Understanding; however, NLU is actually a subset of NLP responsible mainly of 

drawing inference out of text, it is in fact one the most challenging aspects of AI that to this day 

NLP systems have not achieved yet (check figure (1.1)) . 

 

 

Figure 1.1 Terminology of NLP versus NLU 

Thought we have not reached a true natural language understanding, NLP have made a 

great progress in many applications such as machine translation, which achieved translations 

comparable to human. 
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1.2.1. NLP process: 
 

Some of NLP most important phases as shown in figure (1.2): 

A. Lexical analysis: 

 This step involves splitting the input sentences into small entities called Tokens they represent 

the core information that is used throughout the processing. 

B. Syntactic analysis:  

In this phase, the data is parsed to check and validate the sentence composition for example a 

sentence like; “the fridge is inside the cheese” is to be rejected by the parser. 

C. Semantic analysis:  

In this third phase, the goal is to decipher the meaning behind the text, in other words the 

dictionary meaning of each token. For example, the sentence “the fire is cold” is rejected in this 

phase 

D. Output transformation: 

 

 In this last step, the output from the semantic analyzer is transformed into the desired results.  

 

 

Figure 1.2: Steps of NLP 
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1.3. Machine Translation: 
 

Machine translation is the automatic process of transforming a source text from one 

language to another. 

Machine translation is relatively an old task, early attempts started in 1950s but the real progress 

happened in 1970s where there have many approaches to achieve automatic translation: 

- Rule-based Machine Translation (RBMT): 1970s-1990s 

- Statistical Machine Translation (SMT): 1990s-2010s 

- Neural Machine Translation (NMT): 2014- to present  

 

1.3.1. Rule-based Machine Translation: 
 

Rule-based Machine Translation [26] translates using Rules written by humans from 

linguistic knowledge from the both the source language and the target language, this approach 

requires large set of rules (syntactic, semantic and morphological) and bilingual dictionary and 

generates the target text following the steps shown in figure (1.3). 

 

 

Figure 1.3: steps of RBMT 
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While this approach provides a simple and predictable translation and requires only a few 

computational resources its high development and maintaining or extending costs made it fade 

and replaced with other approaches like (SMT) AND (NMT). 

1.3.2. Statistical Machine Translation (SMT): 
 

Statistical Machine Translation [25] uses statistical analysis and predictive algorithms of 

bilingual text corpora (existing human translations of the source and target language) to produce 

a statistical model of translation. 

This model is then used on an untranslated text to generate the most probable and 

reasonable translation this method can be applied either word-based, phrase-based, syntax-

based and hierarchical phrase-based. 

State of the art SMTs are usually phrase based so given a source text. s1
J=s1…..s2…..sJ 

the objective of SMT is to translate it to target language t1
i=t1…..t2…..ti by choosing the target text 

with the highest probability (see the formula bellow). 

Ti
1=argmax P(t1i|s1

J) 

Where “s” and “t” are phrases from the source and target languages and “i” and “j” are the number 

of words in source and target language respectively. 

 

1.3.4. Neural machine translation  
 

Neural machine translation (NMT) in newly rising approach to machine translation, it was 

first introduced in 2014[4], then it caught the attention of researchers and became a hot topic in 

the field of machine translation due to its promising potential. 

Neural machine translation uses large recurrent neural networks to perform translation its 

strength  lies in its ability to learn directly from the data, a true end-to-end method [4], and its 

architecture is composed of two recurrent neural networks (RNNs) an Encoder and a Decoder, 

that work together to produce a translation from a text input check (figure 1.4). 

However, NMT systems in their early stages actually performed worse than the existing phrase 

based systems due to its slower training and inference speed, the inability to deal with rare words, 
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and the problem of long sentences. Nevertheless, recent models have improved upon NMT 

systems making on par if not outperforming all previous techniques.   

 

 

Figure 1.4: Diagram of the NMT system architecture 

NMT process: 

 

NMT process goes through many steps in order to achieve the desired translation check 

figure (1.5). 

The first step in neural machine translation is training the model, which requires a large 

amount of data and computational power. 

NMT systems usually use a bilingual corpus, which is a large collection of sentences in 

one language and their corresponding translation, these sentences must be aligned correctly 

each sentence by its translation. 
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Before inputting the data into the model it must be preprocessed, text preprocessing is an 

important step in machine translation it helps machine learning algorithms digest the inputted data 

more efficiently resulting in better model performance. 

Generally, there are three main components to text preprocessing: 

 Tokenization 

 Normalization 

 Noise removal 

Firstly, tokenization also referred to as segmentation is the process of splitting a sequence of 

characters into small units called tokens; a ‘token’ is the smallest unit when describing syntax of 

a language example:  

                                سأخبركم               س+أخبر+كم       

Text normalization in the process of converting the words into a uniform format, which will 

facilitates operations on them, an example to that is converting all letters to lower case letters, 

removing punctuation, stemming, and lemmatization. 

 Lastly, noise removal is the process of removing non-meaningful characters and digits that can 

interfere with analyzing the text such as (@ ,<>,§,#). 

After preprocessing the data it is then fed to the neural network to begin its training, at the 

start we define multiple parameters concerning the size of neural network, the size of embedding, 

the optimization algorithms to use, the duration of training and much more, then the models is left 

learning and improving by the time. 

When the training is done, the model is tested to evaluate its performance. 

 NMT model usually operates on closed vocabulary corpus meaning it assumes a fixed 

vocabulary size, since it embeds each word of the vocabulary to a sequence on bits (word 

embedding), However there are segmentation techniques that manipulate vocab size to avoid this 

issue.   
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Figure 1.5: The NMT process 
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1.4. Challenges to Arabic language processing  

1.4.1. Arabic script 
 

One of the biggest challenges of Arabic language processing is the Arabic script itself [5], 

due to the lack of letters representing short vowels, absence of capitalization, multiple forms of 

letters and minimal punctuation, that’s why it is challenging to processing compared to European 

languages for example:  

In the Arabic text short vowels are represented by diacritics “التشكيل” which are a specific marks 

above or below the letters indicating what kind of short vowel is used, having this instead of 

dedicated latter increases the processing complexity, meaning each word might have multiple 

meaning depending on the use of diacritics as shown in figure (1.6) . 

 

Figure 1.6: representing how diacritics affect the meaning of the words 

Adding to that in most Arabic text there is no diacritics; the reader is expected to predict them 

based on his prior knowledge. 

Arabic letters have multiple forms depending on their position for example: the letter “غ”  (ghain) 

changes depending on whether it’s in the beginning, the middle, the end of the word    (غغغ). 

In most European languages, sentences usually begin with an upper class letter and end 

with a period, which helps in the translation process since it is crucial to know exactly the 

beginning and the end of the sentences. However, in languages like Arabic, Japanese, Chinese, 

the absence of capitalization makes it difficult to know the boundaries of sentences, thus 

complicating the processing of their text. 
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1.4.2 Arabic morphology: 
 

Arabic is considered a morphologically rich language [6] (MRL) which means that the 

grammatical nature of words is not necessary indicated by its position in the sentence but rather 

with a change in the word itself, these changes are fused into the words and it is often hard to 

define rules that separate the root from the added particles     

Arabic also has a wide variety of affixes, which are letters, added to the beginning or the middle 

or the end of the word altering its meaning [7]. 

 

Figure 1.7: representing the Arabic affixes and their meaning 

1.4.3 Arabic vocabulary 
 

Arabic is the richest language vocabulary wise, according to a survey done by SEBIL 

Center in which they came up with an estimation of the size of the Arabic vocabulary, 12 million 

non-redundant Arabic word compared to 600 thousands English word, this gap between the 

vocabulary sizes makes it difficult to translate to and from.   

1.4.4 Free word order 
 

Most languages have somewhat a strict word order, meaning that for a sentence to have 

meaning it must follow a specific structure, for example in English we say “ Ali wrote the lesson”  

subject+verb+object, but in Arabic that sentence can be written in many different ways having the 

same meaning . 
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Figure 1.8: representing the difference in word order of Arabic and English sentences 

All these special characteristics of the Arabic language requires a complex preprocessing 

algorithms to tackle all these issues, resulting in a better quality training data. 

1.5. Data view  
 

Natural language processing domain and especially Machine translation domain 

acknowledges that is futile to try to write down all the rules and dictionaries that govern languages 

[8], but rather that all the necessary information to perform translation should be extracted directly 

from large amounts of translation examples. 

Text corpora or text corpus is a collection text and there two main types of it: monolingual 

and parallel. Acquiring a large amount of text in single language will help us learn a lot about said 

language the word usage the structure of sentences and there is even a possibility to translate 

purely from a large amount of monolingual text with the help of Unsupervised Machine 

Translation. However, a better resource to use in MT is parallel corpora that comes in the form of 

sentence pairs, a source sentence and its translation. 

1.5.1 Data adequacy 
 

The process of machine translation relies heavily on data adequacy, the ability to match 

source text to its translation. Let us take for example the word (protection) which can have multiple 

Arabic translation depending on the context. 

To predict a word translation a computer counts how many times the word (protection) is 

translated to those possible Arabic translations: 
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From what we see, the most likely translation is (الحماية), but (الوقاية) is also a high possibility 

meaning the system would be wrong many times. However, we can improve upon that by 

considering the boundaries. 

 

This example illustrates contextual information can improve the prediction of the correct 

translation significantly. However, there will be always times were the system predicts the wrong 

translation Hence, the engineering mantra of data-driven machine translation research is not to 

achieve perfect translation, but to drive down error rates [8]. 

1.5.2 Data Fluency 
 

Parallel corpora does more than just matching words with their translation, it helps with 

arranging words in the correct way to insure the fluency of the output. This involves selecting the 

right word order the right function words and the convenient phrasing for the context. 

Corpora data would tell us for example, ‘he went to school ‘is a better ordered sentence than 

‘school he to went’ because the first sentence has been observed many times by the system 

making it a better choice. 

1.5.3 Zipf’s Law 
 

Sparsity is a major issue in data driven methods. Let us assume that we have a corpus 

containing 100 million English words with 100,000 valid word, one would assume that this is a 

very rich statistics to learn about the language but unfortunately this is not the case. 

 The distribution of words in a corpus is highly skewed (see figure 2.9).  Zipf’s law states that the 

frequency f of a word (or its count in a corpus) multiplied with its rank r when words are sorted by 

frequency is a constant k. 
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Table 1.1: the most frequent words in a version of the English Europarl corpus that consists of 30 million words 

Zipf’s law predicts that no matter how big the corpus is there will be many rare words in it, 

Gathering larger corpora will increase the frequency of words, but also reveal previously unseen 

words with low counts.  
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1.5. Conclusion  
 

The need for a faster and cheaper way of translation gave birth to machine translation, which 

came with many challenges and solutions. In this first chapter, we introduced the concept of 

machine translation; we talked about the currently used techniques more specifically the state of 

the art neural machine translation systems; how it works, its limitation, and how it stacks against 

the previous techniques, then we elaborated on the NMT process and highlighted its important 

phases.  

Then we spoke about Data preprocessing and the significant improvement it adds to the 

performance of the NMT systems, especially in the case of complex languages like Arabic. 

After that, we talked about the unique characteristics of the Arabic language that makes it pose a 

challenge for machine translation. 

Finally we discussed the data side and how its problematic when it comes to machine translation. 
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Chapter 2 : Text Segmentation 
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2.1 Introduction  
 

When analyzing a natural language text, it is necessary to define its building blocks, 

defining these units is considered a challenge, especially when we take in consideration the 

diversity of human languages each with its unique writing rules, Natural languages contains 

various ambiguities and finding a solution to this particular problem is one of the main challenges 

of NLP. 

Text segmentation is the process of splitting a sequence of characters into linguistically 

meaningful parts called segments or tokens, these segments can be characters, words, 

sentences or any type of information unit depending on the end goal of the text analysis [8]. 

Segmentation is an important step in text processing it allows us to extract coherent data, 

which we can help apply all sort of different NLP tasks such as Machine Translation, 

summarization, POS tagging  in a more efficient and effective way. 

Word segmentation also referred to as tokenization is the process breaking up a character 

sequence by identifying the word boundaries which is where a word ends and another start, this 

results in what is referred to as tokens, this process can be challenging especially in languages 

with no word boundaries markers in their writing system . 

Sentence segmentation on the other hand is the process of splitting the text into sentences 

containing one or more words it is done by defining the sentence boundaries, in application word 

segmentation and sentence segmentation overlap each other one cannot be achieved without 

the other [8]. 

Segmentation algorithms are heavily dependent on the targeted language meaning a fine 

tuned segmentation algorithm for a specific language would be completely inadequate for 

another. 

Arabic is considered a complex language that poses many challenges in NLP field, it has 

a rich morphological system and ambiguous writing rules [1], so when implementing a 

segmentation scheme for Arabic there are multiple aspect to take in consideration in order to 

achieve a correct segmentation.   
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2.2. Motivation behind text segmentation: 
 

Assuming we want to analyze a specific language script, in order perform NLP tasks such 

as Machine translation. We will have to deploy an automatic mechanism to go through large 

amount of data trying to define features and find patterns specific to said language script, however 

this process will heavily depend on the coherence and the structure of the data to analyze. 

Let us assume we want to translate a text written in English language to Arabic and we 

have a large aligned bilingual corpus English-Arabic meaning thousands of English examples with 

their respective translation, Many MT approaches use a statistical model, which relies heavily on 

counting the number of occurrences of a token in order to predict its translation. 

This would have complications when dealing with languages like Arabic language for example: 

Arabic (لسيارته) )السيارة( )سيارة( )سيارته( 

English (for his car) (his car) (car) (the car) 

 

The Algorithm will assume that each token from the example above is a unique word but in fact, 

it is a composition of words:  

ه  (  \سيارة    \)ل    (for  / his / car) 

 

NMT systems will be affected more with this problem since it usually operates on closed 

vocabulary corpus meaning it assumes a fixed vocabulary size, since it embeds each word of the 

vocabulary to a sequence on bits (word embedding). 

This would affect the performance of the translation significantly if not addressed properly. 

Segmentation has the potential to solve this particular issue, which will improve the 

training data quality, and by extension, the performance of the algorithms applied on it.  

  

 

 

  



Chapter two                                                                                                                                  Text Segmentation 

19 
 

 

 

2.3. Challenges to text segmentation 
 

What makes segmentation a challenging task is the fact that there are many factors to 

take in consideration when developing an algorithm for text segmentation. 

 In the next section, we will emphasize on the main types of issues that we must address when 

devolving such algorithms.  

2.3.1. Language dependency  
 

When talking about text segmentation we mainly focus on written languages that have an 

established writing system this is an important distinction because there are thousands of spoken 

languages and dialects but only small percentage of them have a system of symbols and rules 

representing the information in said language. 

Languages can be categorized into Logographic; where each symbol represents a word 

resulting in a language having thousands of unique characters, syllabic in which symbols 

represent syllables, or alphabetic in which symbols are a representation of sounds, most modern 

language writing systems uses a combination of types so no writing can be classified as  purely 

alphabetic , syllabic , logographic [9]. 

Adding to the diverse symbol types used in writing systems languages often use some 

sort of orthographical rules to denote the boundaries between linguistic units, for example English 

language uses white space  to indicate word boundaries ,punctuation marks like ( ,   .   ;  : ) to 

indicate sentence boundaries making English a fairly easier text to segment, on the other hand 

languages like Arabic and Japanese don’t have explicit markers for words and sentence 

boundaries for example   ) ذهبنا للمتجر)  which translate to ( we went to the store) as we can see it 

is much harder to indicate the word boundaries in an Arabic script  

This wide variety of writing systems complicates the process of text segmentation since 

we have to take in consideration all these language-specific and orthography-specific features in 

order to achieve a proper segmentation meaning each technique is going to be heavily dependent 

on the language it was developed for. 
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2.3.2. Data dependency (Corpus dependency)  
 

The robustness of NLP systems is considered a problem since these systems need a well-

formed input with a predefined structure for them to perform well. 

Large corpora that includes multiple sources (newswire, emails, OCR data, social networks data) 

usually contains misspelling, erratic spacing and punctuation causing algorithms that requires a 

well-formed input to be much less successful on these texts, this is why it became clear that we 

need to develop segmentation algorithms capable of handling such irregularities. 

2.3.3. Text segmentation evaluation 
 

Evaluating and comparing segmentation algorithms very difficult because an algorithm 

may perform well on a specific corpus and not be successful   on another, in other words an 

algorithm fine-tuned for a specific language (A) will most likely be inapplicable on language (B)  , 

however there are some common evaluation algorithms for word and sentence segmentation that 

give information on their performance. 

Word segmentation performance is usually measured with recall and precision where 

recall is defined as the percent of words in the manually segmented text identified by the 

segmentation algorithm [9], and precision is the percentage of words returned by the algorithms 

that occur in the same position as in the reference-segmented text. 

 Sentence segmentation performance score on the other hand is a single score equal to 

the number of punctuation marks correctly classified divided by the total number of punctuation 

marks. 

So even with these evaluation algorithms it is only possible to compare between text 

segmentation algorithms only when applied on the same benchmark corpus that means in real 

world application we cannot know which algorithms will perform better only after testing it. 
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2.4. Related works: 
 

Arabic word segmentation is considered as part of POS tagging problem [10], There have 

been many approaches conducted in the field of Arabic word segmentation the two main 

categories are statistical and rule-based approaches. 

Rule-based approaches such as Khoja [11], and more recently Hadni et al. [12], which 

used a combination of lexicon and a predefined set of morphological rules to identify  affixes and 

clitics.  

As for the statistical approaches two main strategies are used , the first is to consider the 

segmentation as a classification problem and separate it from the POS tagging  process then use 

machine learning to train the classifiers, various techniques have been applied  (SVM) like in the 

work of  A. Pasha et al. [13].  And k-nearest neighbor algorithm as in the work of M. Abdul-

Mageed, M. Diab, S. Kübler [14]. The second strategy is that the segmentation is conducted 

during the morphological analysis, which contains the segmentation information and the POS 

tagging, an example to this is the work of Habash and Rambo [15] in which they used the SVM 

to choose the best solution. Zalmout and habash[16] used BI-LSTM taggers with various 

embedding levels to perform the morphological analysis. 

Other studies have used DNNs to perform word segmentation, a configuration of RNNs 

using BI-LSTM cells have been used for Chinese word segmentation and POS tagging [17] the 

reported experiments show F1 value above  97% which comparable to the state-of-art techniques 

. 

One of the recent work on Arabic word segmentation is Farasa [18] in which they break 

the Arabic word into their constituent clitics based on SVM rank with linear kernels, taking in 

consideration the likelihood of stems, prefixes, suffixes and their combination. Farasa uses 

lexicons to solve the problem of rewriting during the segmentation, it was trained on different part 

of ATB and tested on a corpus containing 70 wiki news articles achieving an F-1 score of 98.94. 

Other works that focuses on Arabic segmentation is MADAMIRA [13] a morphological 

analysis and disambiguation tool for Arabic text that combines the best features from its 

predecessors, MADA (Habash and Rambow, 2005; Habash et al., 2009; Habash et al., 2013) and 

AMIRA (Diab et al., 2007). It uses a streamlined java implementation making it faster and more 
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robust than its predecessors, it achieved an F1- score of 99.1 on test data composed of 25k 

words. 

2.4.1 MADAMIRA: 
 

MADAMIRA [13] follows the design shown in figure (2.2). First, the data must be 

processed and transformed into Buckwalter format (see figure2.1) used within the MADAMIRA 

tool, and then the data is passed to the morphological analysis component, which develops a list 

of all possible analysis each word. The results are then passed to the feature-modelling 

component in which SVM and Language models are used to predict the word’s morphological 

features. SVM for closed class features and language models for open class features, an Analysis 

ranking follows up which evaluates each word’s analysis and then ranks them based on their 

score. The top ranked analysis is then passed to the tokenization component, which produce the 

desired tokenization for the word based on the scheme selected by the user. The next component 

Base phrase chunking is used to divide text into phrases and lastly Named Entity recognizer is 

used to divide text into phrases and to mark and categorize named entities within the text. 

 

 

Figure 2.1: Buckwalter format 

MADAMIRA impresses with its 11 tokenization schemes including ATB, D3, D3_BWPOS 

providing various segmentation option for the user to choose from. The word throughput for 

MADAMIRA is rated at 1013 word/sec, which is considerably faster than the Previous AMIRA 

system that tops at 255 words/sec. 
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Figure 2.2: Overview of MADAMIRA Architecture (adapted from [13]) 

2.4.2 Ferasa  
 

Ferasa is an Arabic word segmenter based on SVM-rank with the use of linear kernels 

[19] it claims to be on part with state-of-art Arabic segementers (MADAMIRA and Stanford) while 

being significantly faster and more efficient. 

Ferasa uses a set of conditional probability to determine prefixes and suffixes and stems 

as for any given word it extracts all character level segmentation possibility leading to a sequence 

of segments as shown in figure (2.3): 

 

Figure 2.3: Ferasa sequence structure 
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These prefixes and suffixes are predefined as follows: 

- Valid prefixes: f, w, l, b, k, Al, s. (ف, و, ال, ب, ك, ل, س). 

- Valid suffixes: : A, p, t, k, n, w, y, At, An, wn, wA, yn, kmA, km, kn, h, hA, hmA, hm, hn, 

nA, tmA, tm, tn ( ,ان,ون,وا,ين,كما,كم,كن,ه,هما,هم,هن,نا,تما,تما,تم,تن,ا,ة,ت,ك,ن,و,ي,ات ). 

Also it generates a list of possible prefix and suffix combination for example ( وبالعلم) which contains 

a prefix combination (و+ب+ال+علم) ( w + b + al+Elm). 

The learning process starts by constructing feature vectors for each possible 

segmentation and marking the correct segmentation for each word, and then a SVM-rank 

algorithm is used to learn features weights, during test all possible segmentation with valid 

prefixes and suffixes are generated and then given a score by the classifier ranking them from 

most likely to unlikely. 

For training Ferasa used Parts 1,2 and 3 of the Penn Arabic Treebank (ATB), as for testing 

it was done test set composed of 70 WikiNews articles (from 2013 to 2014) covering various 

themes:  politics, economics, health, science and technology, sports, art. 

Ferasa achieved state-of-art F-1 score measured at 98.94% while being significantly faster than 

its competitors like MADAMIRA (F-1 score 99.1%). 

2.4.3 Stanford segmenter   
 

Stanford segmenter [20] uses a single clitic segmentation model that is accurate on both 

MSA and informal Arabic. It is an extension of the character-level conditional random field (CRF) 

model of Green and DeNero (2012). It handles two Arabic orthographic normalization rules that 

commonly require rewriting of tokens after segmentation. It also adds new features that improve 

segmentation accuracy and shows that dialectal data can be handled in the framework of domain 

adaptation. It also makes use of a simple feature called space augmentation (Daumé, 2007) that 

yields significant improvements in task accuracy. 

Green and DeNero use a linear-chain model with X as the sequence of input characters, 

and Y∗ chosen according to the decision rule: 

 



Chapter two                                                                                                                                  Text Segmentation 

25 
 

Figure 2.4: decision rule for the Green and Denero model 

Stanford segmenter is equipped to handles some Arabic-specific orthographic rewrites, as for 

example the letter (ت) becomes (ة) when the word is segmented and it occurs on final position. 

Green and DeNero is a third-order Markov CRF, employing the following indicator features: 

-  A five-character window around the current character. 

- N-grams consisting of the current character and up to three preceding characters. 

- Whether the current character is punctuation. 

- Whether the current character is a digit. 

- The Unicode block of the current character. 

- The Unicode character class of the current character. 

In addition to these, it includes two more features specific motivated by the errors in the original 

system: 

- Word length and position within a word 

- First and last two characters of the current word, separately influencing the first two labels 

and the last two labels 

The segmenter was trained and evaluated on Arabic Tree Bank (ATB), the Broadcast news 

treebank (BN), and Egyptian Arabic Treebank (ARZ), it achieved the following results: 

- F1 score of 98.24- 97.39 – 92.09 in (ATB, BN, ARZ) respectively. 

- TEDEval score of 98.74 – 98.29 – 92.32 in (ATB, BN, ARZ) respectively. 

  

2.4.4. Byte Pair encoding (BPE) 
 

Byte pair encoding (Gage, 1994) is a data compression technique that replaces the most 

frequent pair of bytes in a sequence with a single unused byte. 

It was adapted into the NMT field in the work of Rico Sennrich [21]; BPE addresses the out of 

vocabulary Problem and enables NMT systems to perform open-vocabulary translation by 

encoding rare and unknown words as sequences of sub-word units. 

BPE operates as follows (See figure 2.5): 

- Step 0: initializing the vocabulary of the corpus. 
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- Step 1: represent each word of the corpus as a sequence of characters while marking the 

word boundaries with special symbol that allows us the original tokenization after the 

translation is done  

- Step 2:  iteratively count all symbol pairs and replace each occurrence of the most frequent 

pair (‘A’, ‘B’) with a new symbol ‘AB’. 

- Step 3: Merge every occurrence of the most frequent pair, add the new character n-gram 

to the vocabulary. 

- Step 4: Repeat step 3 until the desired number of merge operations are completed or 

the desired vocabulary size is achieved. 

 

Figure 2.5: Minimal Python implementation of BPE algorithm (adapted from [27]) 

To apply BPE on the data, first, each word is split to a sequence of characters; the trained 

BPE model then applies the learned operations to merge the characters into larger, known 

symbols. This is applicable to any word, and allows for open-vocabulary networks with fixed 

symbol vocabularies. 
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2.5 Evaluation metrics  
 

2.5.1. Word segmentation evaluation 
 

a- Precision, Recall, F-1 measure: 

 

When evaluating a segmentation technique the standard is to calculate word level 

precision, recall and their evenly weighted average F1-score to measure the performance of said 

technique. 

The correctly segmented words are regarded as true positives (TP), and the total words 

returned by the segmenter are considered prediction positives (PP), to calculate the precision of 

a technique we use this formula:  

Precision= TP /PP ………….. (1) 

As for recall function, we simply divide true positives (TP) by reference positives (RP) which is 

the total number of words in the reference text: 

Recall = TP/RP……………….. (2) 

 The F-1 measure is a combination of both precision and recall into a single measurement 

capturing both properties: 

F-1 Measure = (2 * Precision * Recall) / (Precision + Recall) … (3 

 

B- TEDEval 

 

TEDEval is a novel metric for evaluating joint segmentation and parsing scenarios [22], it 

uses distance-based metrics defined for the space of trees over lattices. 

TEDEval uses a cost function that assigns a cost unit the possible actions ‘a’ (adding, 

removing a lexeme) and then defines the cost of a sequence (a1… an) an editing script (ES) 

performed on a tree Y2 (predicted segmentation) to transform it to Tree Y1 (reference 

segmentation) as shown in the following formula: 
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This cost is cosidred an error measurement which need to be normalized and transformed 

into a score, assuming we have the predicted structure p and the gold structure g we can extract 

and evaluation score using this formula: 

 

The term |p| + |g| − 2 is a normalization factor defined in terms of the worst-case scenario, 

in which the parser has only made incorrect decisions. We would need to delete all lexemes and 

nodes in p and add all the lexemes and nodes of g, except for roots. 
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2.5.2. Machine translation evaluation  

 

BLEU score: 

 

It is critical to have a valid comparative metric to help guide research and provide a way 

to compare between outputs of different translation systems, however translation is an ambiguous 

task, meaning even two professional human translators would most likely produce a different 

translation to the same text. Adding to that not only we need to worry about matching words but 

also their order some languages like Arabic for example have free word order meaning there 

multiple valid orders to a sentence and knowing which is correct and not complicates the process 

even more. 

That is why researchers at IBM came up with metric that compromises between ignoring 

and requiring matching word order, they called it BLEU. The idea behind BLEU score is that it 

does not just count the matching words from the output and the reference but also larger order 

N-grams [23] meaning it rewards the matching word order too (see figure (2.6)). 

 

Figure 2.6: Example of matching N-grams 

The BLEU metric uses a brevity penalty it is based on the ratio between the number of 

words in the machine translation and reference translation. 

The BLEU metric is defined as shown in the following formula: 
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METEOR metric: 

 

The METEOR [23] metric introduced a couple of novel ideas. One perceived flaw of BLEU 

is that it gives no credit at all to near matches. Meaning if the system translates the Arabic word 

 to (safe) but in the reference they used the word (safety) even though they have similar (الحماية(

meaning but blue score consider that translation to be a mismatch and gives no to credit to it. 

However meteor by the use of stemming can match the correct segments (safe = safe+ty) and 

acknowledge as a near miss. 

Another way to detect near misses is using synonyms, or semantically closely related 

words. Meaning if the system translates the Arabic word )الحماية) to the word (security) instead of 

(safety) which is close in meaning may be irrelevant in bringing across the meaning of the 

sentences and should not be penalized. 

METEOR incorporates the use of stemming and synonyms by first matching the surface 

forms of the words, and then backing off to stems and finally semantic classes. The latter are 

determined using Wordnet, a popular ontology of English words that also exists for other 

languages. The main drawback of METEOR is that its method and formula for computing a score 

is much more complicated that BLEU’s. Linguistic resources such as morphological stemmers 

and synonym databases are required. The matching process involves computationally expensive 

word alignment. There are many more parameters – such as the relative weight of recall to 

precision, the weight for stemming or synonym matches – that have to be tuned. 
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2.7 Conclusion  
 

One weakness of neural machine translation is its robustness concerning the training data. 

The data must be formatted, cleaned, and structured adequately for it to be properly digested by 

the neural network; as a result, the performance of these RNNs is tied directly to the quality of the 

training data.  

In this chapter, we talked about text segmentation (tokenization), and how it can drastically 

improve the performance of the translation algorithms, and then we highlighted some of the main 

challenges that faces text segmentation. 

After that, we discussed some of the current state of the art segmentation techniques such 

as MADAMIRA and Ferasa and we shared their benchmarks. 

Then we finished the chapter with some of the evaluation metrics for both the 

segmentation and the translation. 
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3.1. The proposed method: 
 

Most current text segmentation algorithms that are aimed toward Machine translation 

relies on monolingual corpus in training, meaning it extracts all the necessary features and the 

linguistic rules directly from the corpus of the languages intended for. 

In this work, we want to propose a new method for text segmentation in which we make 

use of parallel corpus in the training process to try to breach the gap between the source language 

and the target language in the translation process. We theories that having a segmentation 

scheme tailored specifically for a specific pair of languages would yield better translation results.   

The idea revolves around three common concepts in the machine translation field. Text 

Alignment, which is having each sentence from the source language side by side its translation 

from the target language. And occurrence counting which is how many times a specific word from 

source language is translated to the same word from the target language. Lastly, vocabulary size 

manipulation, a corpus vocabulary is the set of unique words used in the text corpus; it can also 

be character-based (e.g. each letter). 

Our technique uses mentioned concepts to perform the segmentation, first we start by 

separating the characters on the Arabic side so that we have each letter by itself for example: 

 Then we align the training data, in our case an Arabic- English .(ا ل م د ر س ة) becomes (المدرسة)

parallel corpus. Then Next step is to count the occurrences of sequences of Arabic characters 

that aligns with complete English words and sort them based on their frequency from highest to 

lowest. This would help us extract and filter the phrases from the Arabic side of the corpus that 

match complete words from the English side of the corpus, and then we train BPE model on the 

extracted phrases to joint those sequences of characters. 

In short, we want to joint Arabic sequence of characters, which have one English word 

aligned with consistency. See figure (3.1) for an overview of Alignment-based Segmentation 

technique. 
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Figure 3.1: flowchart representing an overview for the proposed method 
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3.2. Used Hardware and Software: 
 

A. hardware: 
 

Most of our experiments are conducted on a desktop computer with the following specifications: 

- CPU: AMD Ryzen 5 2600x series 6 cores / 12 threads running at 4.0 GHZ  

- GPU: Nvidia GeForce 1070ti with 8 GB of ddr5 Vram and 2432 CUDA cores  

- Memory: 16 GB of dual channel RAM running at 3200 MHZ  

- Storage: 128 GB M.2 nvme SSD + 1000 GB HDD + 500 GB SSD  

 

B. software: 
 

 Throughout our experiments, we used various software and tools and programming languages 

all running on Linux OS  

- OS: Linux Ubuntu 18.04 LTS  

 

For the segmentation: 

 

Our segmentation algorithm is implemented using python with the use of other softwares such as  

- fast-align: which is   a simple, fast, unsupervised word aligner. 

- sentence piece: to apply BPE algorithm  

- giza aligner: used for alignment  

- moses: collection of language processing tools  

 

For translation: 

 

We used Open-NMT1 to create translation models; it is an open source ecosystem for 

neural machine translation and neural sequence learning. Open-NMT Started in December 2016 

by the Harvard NLP group and SYSTRAN. 

 

 

                                                             
1 https://opennmt.net/ 
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3.3 Used Data: 
 

Our training and testing was conducted on TED talks parallel corpora. 

TED parallel Corpora is growing collection of Bilingual parallel corpora, Multilingual parallel 

corpora and Monolingual corpora extracted from TED talks2 for 109 world languages. It includes 

Monolingual corpus, 12 languages for Bilingual parallel corpus over 120 million aligned sentences 

and 13 languages for Multilingual Parallel corpus with more than 600k sentences. The goal of the 

extraction and processing was to generate sentence-aligned text for machine translation systems.  

We use the official IWSLT 2017 evaluation campaign Data. The transcripts are given as 

pure text (UTF8 encoding), one or more sentences per line, and are aligned (at language pair 

level, not across pairs). 

The Arabic-English corpus we used is composed of about 400k sentences (see tables bellow) 

Data set Sentences tokens 

Arabic English 

Training 400,000 3,400,000 4,200,000 

Validation 1830 20,000 26,000 

Testing(IWSLT17.TED.tst2014) 1316 18,000 21,000 

Table 3.1: Summary of statistics of the training and test data 

 Arabic side English side 

Rank Token occurrence Coverage (%) Token occurrence Coverage (%) 

 The 198181 4.72 2.87 98929 في 1

 And 142978 3.40 2.49 85804 من 2

 To 117732 2.80 1.37 47220 أن 3

 Of 109176 2.60 1.21 41871 على 4

 A 100429 2.39 1.12 38636 و 5

 That 76710 1.83 0.85 29426 هذا 6

 In 73816 1.76 0.73 25060 ما 7

 I 61580 1.47 0.68 23349 هذه 8

                                                             
2 www.ted.com 
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 Is 58992 1.40 0.66 22784 لا 9

 you 55564 1.32 0.59 20426 هو 10

Table 3.2: some statistics about the Arabic vocabulary 

3.4. Implementation details  

 

3.4.1. Character separation: 
 

The first thing we wanted to do is reduce the vocabulary size of the Arabic side of the 

corpus, meaning we separate the Arabic characters from each other so that we have each letter 

by itself. Then we mark the words boundaries so that we be able retrieve the original data ones 

the process is done and to do that we simply insert ‘#’ at the start of each word see figure 3.2 for 

an example. 

 

Figure 3.2: format of the training data 

And to do that we used the command ‘sed’. SED command in UNIX is stands for stream 

editor and it can perform lots of function on file like, searching, find and replace insertion or 

deletion: 

 

3.4.2 Performing the Alignment: 
 

The next step is to perform the alignment. Most of the text alignment implementations are 

based on the Expectation Maximisation Algorithm. 

Assuming we have a pair of language ( A-B) we start by aligning language B according to 

language A meaning token in position ‘1’ in the A language  side is aligned with ‘n’ tokens from 

the side of language B.  

Then we do the opposite we align language A according to language B so that we have for 

example tokens ‘m’ from language A side are aligned with the token in position ‘1’ on the B 

language side. 
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Finally, we combine both ways alignments to get the alignment output ‘m, n’. 

In our experiments we used fast align [24]. Its input must be tokenized and aligned into 

parallel sentences. Each line is a source language sentence and its target language translation, 

separated by a triple pipe symbol with leading and trailing white space (|||). See figure 3.4 

 

 

                                                         Figure 3.3: Fast align input format 

 

Fast align generates asymmetric alignments, by treating either the left or right language 

in the parallel corpus as primary language being modelled. To generate source–target (left 

language–right language) we simply use the following command: 

 

 

Fast align produces outputs in the widely used i-j “Pharaoh format,” where a pair i-j 

indicates that the ith word (zero-indexed) of the left language (by convention, the source language) 

is aligned to the jth word of the right sentence (by convention, the target language). 

 

Figure 3.4: Fast align output format 
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3.4.3. Phrase Extraction and filtering: 
 

We use the alignment output to align segments from the Arabic side that match complete 

words from the English, this would help us see which Arabic characters can be reliably merged.  

To be able to see repetitive alignments so that we can extract phrases we sorted the resulted 

alignments by their frequency from highest to lowest see table (3.3) for an example. 

Order Alignments Frequency 

1 in   |||  3492 ف ي 

2 this|||  3349 ه ذ 

3 on  |||  3287 ل ى 

4 now|||  1961 ل آ 

5 like  |||  1335 ث ل 

6 So  |||  988 ل ذ 

7 things  |||  523 ش ي ا ء 

8 part  |||  517 ج ز ء 

9 still  |||  408 ز ا ل 

10 said  |||  361 ق ا ل 

11 person  |||  295 ش خ ص 

 

Table 3.3: The Table of phrases with their frequencies 

Our alignment file contained more than 6 million alignments of which only about 100k had 

a frequency above five, we only focused on repeated alignments. 

What we want here is to extract all the phrases from the Arabic side that matches complete words 

from the English side while having high frequency. 

We filtered out all the alignments that occurred less than 5 time and the alignments that contained 

more than one word on the English side, and also all the alignment that had end of word marker.  

3.4.4. Training and Applying BPE: 
 

Byte pair encoding is a simple data compression technique, the idea behind it is to 

iteratively replace the most frequent pair of bytes with an unused byte, and this idea was adapted 

into word segmentation algorithms by merging the most frequent pair of characters or sequence 

of characters.  

The reason we wanted to trained BPE model on the extracted phrases is so that when applying 

the BPE on the training data it would merge the characters based on the aligned phrases from 

the table. 
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We start by training the modified BPE model on the extracted phrases using the following 

command: 

 

 

We trained two different BPE models:  Alignment-based model (our technique) and monolingual 

(standard BPE). We modified Sennrich’s BPE [21] implantation to support the alignment input (see the 

appendix for the most relevant parts of the algorithm). 

As you can see, the phrases from alignment-based model and the monolingual are quite different. 

After that we simply apply the models on the training data and use it to train the NMT system 

 

 

Table 3.4: comparative table between the Alignment-based BPE model and standard BPE model 

 

 

 

 

 

Alignment-based model Monolingual model 
 أص بحت أصبح ت
 أنفس نا أن فس
 ا ستخدام ا ستخدام
 اق تصا إق تصاد
 بالط بع بال طبع
 بالف عل بال فعل
 ص غيرة صغير ة
 ص ورة صور ة
 طري قة طريق ة
 ع ظيم عظ يم
 ص لشخ ل شخص
 ذا له ل هذا
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3.5. Experiments and results: 

 

3.5.1. Our Neural machine configuration: 
 

To test our segmentation we trained multiple neural networks using Open-NMT.py to 

perform translation between Arabic and English language. Training such Networks requires a lot 

of resources and it is very sensitive to hyper-parameters. To find the correct configuration 

experiments must be conducted. 

To give you an idea on how much resources it takes to train state of the art NMT systems see the 

table below. 

Rank Model Training time 

1 Transformer 3 days on 8 GPUS 

2 SliceNet 6 days on 32 GPUS 

3 GNMT 1 day on 96 GPUS 

Table 3.5: training duration of state of the art NMT models 

Choosing the correct configuration for the training is challenging task in itself we had to balance 

between the performance of the system and the training duration  

After many experiments, we settled on the following the configuration see figure 3.5: 

 

 

Figure 3.5: translation model configuration 
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Since our hardware contains only one GPU, to be able to conduct multiple experiments 

we had to settle for a small neural network containing two layer LSTM with 500 hidden units on 

both the encoder and decoder trained for a maximum of 200k steps. 

When training the model with different types of data we had various convergence rates 

depending on the data some reached their best result before the trained was completed, we 

noticed that after 100k steps many models suffered from over fitting. However, since we can save 

checkpoints, we can simply take the checkpoint with the best performance and stop the training 

if we see no improvement after a specific number of steps. 

200k steps equates to approximately 8 hours of training with the configuration mentioned 

above, some models took about 5 hours to reach their best performance some showed no sign 

of convergence even after 20 hours. 

The Table below shows the training duration of some of the models we trained with different 

processing on the training data  

Data type Training steps ( best 

checkpoint) 

Duration 

Bpe (4k-4k-i) 95000 3h 49min 

Bpe(4k-4k) 110000 4h 1min 

raw 200000 8h 

segchar 200000 8h 

 

Table 3.6: Training duration for some of our experiments 

 

3.5.2 English to Arabic translation results: 
 

We performed 12 different experiments on English to Arabic translation; we tested multiple 

types of data and reported the performance of the translation using BLEU metric. 

Our first set of experiments was to try to find which vocab size works best for our model 

so we performed BPE on our data in multiple configuration and reported the BLEU score of each. 

We did this to set a baseline to compare our results.   
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Language /vocab size Arabic/ 4k Arabic/8k Arabic/16k 

English/ 4k 9.52 % 9.69 % 9.58 % 

English/8k 7.67 % 7.73 % 6.17 % 

English/16k 9.33 % 9.64 % 9.71 % 

 

Table 3.7: the impact of vocab size on the translation performance for BPE algorithm 

From what we can see the 4K and the 16K combinations performed well achieving the 

highest results on average (16K-16K scored 9.71 and 4K-4K scored 9.58), however it seems that 

when selecting 8K vocab size on the English side the results drop significantly as low as 6.17 in 

the case of 16K-8K. 

 In the next set of experiments, we are going to put our technique Parallel alignment segmentation 

to the test with the best performing configuration of BPE: 

For the sake of simplicity when naming the data types, we chose this format [name of the 

technique (size of the source language EN vocab-- size of target language AR vocab)]. 

 

Model name Data type BLEU score 

m-raw Raw (non-processed) 5.34 

m-bpe-4k4k BPE( 4k-4k) 9.52 

m-bpe-16k-16k BPE(4k-16k) 9.71 

m-bpe-4k-8k BPE(8k-4K) 7.67 

m-ABS ( our technique) ABS(4K-4k) 8.09 

 

Table 3.8: performance comparison between our technique and BPE with different configurations (English to Arabic) 
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Figure 3.6: Comparative chart (English to Arabic) 

 

As we can see from the result table and the comparative chart our segmentation technique 

did improve the translation performance compared to the raw data model and some of the BPE 

configurations, however it fell short of reaching the performance of the best configuration 4K/ 16K 

of the BPE technique.   

BLEU score indicates the overall performance of the model, it is calculated over the 

entirety of the test data set which includes over 1000 sentence, meaning if a model has a higher 

score than another  that doesn’t mean that it translated all the test examples better. 
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3.5.3. Arabic to English translation results: 
 

We wanted to test our segmentation technique in both ways to see how it performs so we trained 

our model to translate from English to Arabic too.  

The next set of experiments follows the same structure of the previous one the only difference now is 

that Arabic is the source language and English is the target one. 

[Model name (size of vocab source language AR -- size of vocab in the target language EN)]. 

Model name Data type BLEU score 

m-raw Raw (non-processed) 13.25 

m-bpe-4k4k BPE( 4k-4k) 19.62 

m-bpe-16k-16k BPE(4k-16k) 20.97 

m-bpe-4k-8k BPE(8k-4K) 15.31 

m-parallel( our technique) ABS(4k-4k) 18.89 

 

Table 3.9: performance comparison between our technique and BPE with different configurations (English to Arabic) 

 

 

Figure 3.7: Comparative chart (English to Arabic) 
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As we can see it is much easier to translate from Arabic to English than the way around, 

the BLEU score of all the models is significantly higher. 

We also notice the same pattern as the previous experiment our model scored 18.89 

improving upon the raw model and 4k-8k BPE configuration, but again fails to outperform BPE’s 

best configurations. 

We assume that the reason our technique did not match the BPE is because in our 

technique operates only on one side the corpus (Arabic). We think if we can include the English 

side as well in the process we might be able to improve the performance of ABS, this requires 

further experiment to confirm.  

 

3.6. Conclusion: 
 

In this chapter, we first introduced our proposed method and detailed all the steps involved 

in its implementation, our Parallel Alignment segmentation (PAS) technique aims to joint Arabic 

sequence of characters, which have one English word aligned with consistency. 

Then, we detailed our NMT model configuration and how it was implemented, and then 

we gave information about the data we used in training and testing.  

After that, we showed our experiments results, which demonstrates the performance of 

our technique and puts it in comparison with BPE algorithm, our technique (ABS) showed decent 

performance, however it fell short when compared to BPE best configurations.    

Finally, we gave some assumptions on how we can improve our technique. 
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General conclusion   
 

Achieving human like language processing is what NLP field researchers strive for, 

developing a system capable of understanding human natural language with all its ambiguity, 

irregularity, and diversity is no simple feat that we are yet to reach it. 

 In This work, we explored the task of Machine translation which one of the most important 

tasks of NLP, we highlighted its mechanism, challenges, and dependencies. There have been 

many approaches to MT starting from rule-based techniques (RBMT) all the way to recent neural 

machine translation (NMT) with each having its own limitations and advantages. 

 What all these techniques have in common and especially NMT systems is their reliance 

on the quality of the training data, having a large, well-structured data set with rich vocabulary 

about a specific language would in fact improve that performance of the translation model. 

 Parallel corporal are commonly used data structure when it comes to NMT, which comes 

in the form of sentence pairs, a source sentence and its translation. In our case, we chose the 

pair English-Arabic since Arabic is a good example of a morphological rich language and English 

is the most used languages online. 

 In this work, we studied the impact of pre-processing on the performance of Arabic neural 

machine translation. We introduced our Alignment-based segmentation technique (ABS) and 

tested its performance in various experiments, we report that our technique improves the 

translation performance and even outperform BPE in some cases however did not match BPE 

best performing configuration. 

 We managed to implement a segmentation technique (ABS) that in fact did improve the 

performance of the NMT system. However, it is still in need of improvement so as follow up to this 

work we want to add a proper segmentation process to the English side of the corpus and perform 
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more experiments to fine tune our technique, we also want to test our technique with more 

sophisticated NMT models such as transformer and GNMT models. 

We would also want to point out that more data is needed when it comes to Arabic 

corporal, having more training data is a necessity if we want to push forward the Arabic neural 

machine translation.  
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Appendix: 
 

def learn_bpe(infile, outfile, num_symbols, min_frequency=2, verbose=False, is_dict=False, tot
al_symbols=False, num_workers=1, no_bow=False,count_cvt=int): 
    """Learn num_symbols BPE operations from vocabulary, and write to outfile. 
    """ 
 
    outfile.write('#version: 0.2\n') 
 
    vocab = get_vocabulary(infile, is_dict, num_workers,count_cvt) 
    if no_bow: 
        vocab = dict([(word2tuple(x) ,y) for (x,y) in vocab.items()]) 
    else: 
        vocab = dict([(tuple(x[:-1])+(x[-1]+'</w>',) ,y) for (x,y) in vocab.items()]) 
    sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True) 
 
    stats, indices = get_pair_statistics(sorted_vocab) 
    big_stats = copy.deepcopy(stats) 
 
    if total_symbols: 
        uniq_char_internal = set() 
        uniq_char_final = set() 
        for word in vocab: 
            for char in word[:-1]: 
                uniq_char_internal.add(char) 
            uniq_char_final.add(word[-1]) 
        sys.stderr.write('Number of word-
internal characters: {0}\n'.format(len(uniq_char_internal))) 
        sys.stderr.write('Number of word-
final characters: {0}\n'.format(len(uniq_char_final))) 
        sys.stderr.write('Reducing number of merge operations by {0}\n'.format(len(uniq_char_i
nternal) + len(uniq_char_final))) 
        num_symbols -= len(uniq_char_internal) + len(uniq_char_final) 
 
    # threshold is inspired by Zipfian assumption, but should only affect speed 
    threshold = max(stats.values()) / 10 
    for i in range(num_symbols): 
        if stats: 
            most_frequent = max(stats, key=lambda x: (stats[x], x)) 
 
        # we probably missed the best pair because of pruning; go back to full statistics 
        if not stats or (i and stats[most_frequent] < threshold): 
            prune_stats(stats, big_stats, threshold) 
            stats = copy.deepcopy(big_stats) 
            most_frequent = max(stats, key=lambda x: (stats[x], x)) 
            # threshold is inspired by Zipfian assumption, but should only affect speed 
            threshold = stats[most_frequent] * i/(i+10000.0) 
            prune_stats(stats, big_stats, threshold) 
 
        if stats[most_frequent] < min_frequency: 
            sys.stderr.write('no pair has frequency >= {0}. Stopping\n'.format(min_frequency)) 
            break 
 
        if verbose: 
            sys.stderr.write('pair {0}: {1} {2} -
> {1}{2} (frequency {3})\n'.format(i, most_frequent[0], most_frequent[1], stats[most_frequent]
)) 
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        outfile.write('{0} {1}\n'.format(*most_frequent)) 
        changes = replace_pair(most_frequent, sorted_vocab, indices) 
        update_pair_statistics(most_frequent, changes, stats, indices) 
        stats[most_frequent] = 0 
        if not i % 100: 
            prune_stats(stats, big_stats, threshold) 
 

 
def replace_pair(pair, vocab, indices): 
    """Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'""" 
    first, second = pair 
    pair_str = ''.join(pair) 
    pair_str = pair_str.replace('\\','\\\\') 
    changes = [] 
    pattern = re.compile(r'(?<!\S)' + re.escape(first + ' ' + second) + r'(?!\S)') 
    if sys.version_info < (3, 0): 
        iterator = indices[pair].iteritems() 
    else: 
        iterator = indices[pair].items() 
    for j, freq in iterator: 
        if freq < 1: 
            continue 
        word, freq = vocab[j] 
        new_word = ' '.join(word) 
        new_word = pattern.sub(pair_str, new_word) 
        new_word = tuple(new_word.split(' ')) 
 
        vocab[j] = (new_word, freq) 
        changes.append((j, new_word, word, freq)) 
 
    return changes 
 

 


