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Abstract: 
Statistical Natural Language Processing (NLP) has seen tremendous success over the recent 
years and its applications can be met in a wide range of areas. NLP tasks make the core of very 
popular services such as Google translation, recommendation systems of big commercial 
companies such Amazon, and even in the voice recognizers of the mobile world.  

Nowadays, most of the NLP applications are data-based. Language data is used to estimate 
statistical models, which are then used in making predictions about new data which was 
probably never seen. In its simplest form, computing any statistical model will rely on the 
fundamental task of counting the small units constituting the data. 

With the expansion of the Internet and its intrusion in all aspects of human life, the textual 
corpora became available in very large amounts. This high availability is very advantageous 
performance-wise, as it enlarges the coverage and makes the model more robust both to noise 
and unseen examples. On the other hand, training systems on large data quantities raises a new 
challenge to the hardware resources, as it is very likely that the model will not fit into main 
memory. This is where the external memory (disk) comes in handy. 

The idea of exploiting the disks to hold parts of the data while working on other parts in main 
memory proved very useful in many NLP tasks. In particular, the tasks which may inflate the 
training data with combinatorial compositions, such as machine translation or language 
modelling. However, to the best of our knowledge, the solutions which exist for this purpose 
do not take full advantage of the parallel architectures which are very common nowadays.  

This work is an initial step towards combining parallelism with external memory in the n-gram 
counting task. We build our solution on top of the STXXL library, which gives access to many 
ready-to-use external memory data structures, while supporting parallelism in the IO level. We 
go a step further, by distributing the computation over many machines each of which runs the 
computation using multiple threads. The result is a highly parallel solution, which can perform 
counting on large datasets on limited resources hardware. Our solution can achieve up to 4 
times speedup over a single unit-single disk solution. 

To the best of our knowledge, software products which perform this task (e.g.KenLM) have the 
following limitations: assuming that the vocabulary is not larger than the ram, don’t support 
distributed parallelism and don’t support parallel disk model. 

Our work some with the objective to overcome these limitations by indexing the text wish give 
us the ability to support large vocabulary , use STXXL wish give us the ability to support 
parallel disk model , use different component to support distributed parallelism.  

This thesis describes the several performance techniques used to apply our solutions. 

Key words: Memory, NLP, STXXL, Corpora, disk 
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Résumé:  

Le statistique Traitement Automatique de la Langue Naturelle (TALN) a connu un succès 
considérable au cours des dernières années et ses applications peuvent être satisfaites dans un 
large éventail de domaines. Tâches de la (TALN) font le noyau de services très populaires tels 
que la traduction Google, les systèmes de recommandation des grandes entreprises 
commerciales telles que Amazon, et même dans les connaisseurs de la voix du monde mobile. 

De nos jours, la plupart des applications (TALN) sont basées sur des données. Les données 
linguistiques sont utilisées pour estimer les modèles statistiques, qui sont ensuite utilisés pour 
faire des prédictions sur de nouvelles données qui n'ont probablement jamais été vues. Dans sa 
forme la plus simple, le calcul d'un modèle statistique reposera sur la tâche fondamentale de 
compter les petites unités constituant les données. 

Avec l'expansion d'Internet et son intrusion dans tous les aspects de la vie humaine, les corpus 
textuels sont devenus disponibles en très grande quantité. Cette haute disponibilité est très 
avantageuse en termes de performances, car elle élargit la couverture et rend le modèle plus 
robuste à la fois pour le bruit et les exemples non vus. D'un autre côté, la formation de systèmes 
sur de grandes quantités de données soulève un nouveau défi pour les ressources matérielles, 
car il est très probable que le modèle ne rentrera pas dans la mémoire principale. C'est là que la 
mémoire externe (disque) est utile. 

L'idée d'exploiter les disques pour conserver des parties des données tout en travaillant sur 
d'autres parties de la mémoire principale s'est avérée très utile dans de nombreuses tâches 
(TALN). En particulier, les tâches qui peuvent gonfler les données d'apprentissage avec des 
compositions combinatoires, telles que la traduction automatique ou la modélisation de langage. 
Cependant, à notre connaissance, les solutions qui existent à cet effet ne tirent pas pleinement 
parti des architectures parallèles qui sont très courantes de nos jours. 

Ce travail est une première étape vers la combinaison du parallélisme avec la mémoire externe 
dans la tâche de comptage n-gramme. Nous construisons notre solution en se basant sur la 
bibliothèque STXXL, qui donne accès à de nombreuses structures de données de mémoire 
externe prêtes à l'emploi, tout en prenant en charge le parallélisme au niveau des E / S. Nous 
allons plus loin, en répartissant le calcul sur de nombreuses machines dont chacune exécute le 
calcul en utilisant plusieurs threads. Le résultat est une solution hautement parallèle, qui peut 
effectuer le comptage sur de grands ensembles de données sur du matériel à ressources limitées. 
Notre solution peut atteindre jusqu'à 4 fois l'accélération sur une seule unité de disque unique. 

À notre connaissance, les produits logiciels qui exécutent cette tâche (par exemple, KenLM) 
ont les limitations suivantes: le vocabulaire n'est pas plus grand que la RAM, ne supportant ni 
le parallélisme distribué, ni le modèle de disque parallèle. 

Notre travail dans l'objectif de surmonter ces limitations en indexant le texte, nous permet de 
prendre en charge un large vocabulaire, l'utilisation de STXXL nous permet de prendre en 
charge des modèles de disques parallèles, d'utiliser différents composants pour supporter le 
parallélisme distribué. 

Cette thèse décrit les différentes techniques de performance utilisées pour appliquer nos 
solutions. 

Clés : mémoire, TALN, STXXL, corpus, disque 
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  :الملخص

تطبيقاتھا في مجموعة واسعة من  رؤيةويمكن  الأخيرة،نجاحًا ھائلاً خلال السنوات  لقد شھدت معالجة اللغات الطبيعية الإحصائية

وأنظمة التوصية الخاصة بالشركات 'جوجل'  ةلخدمات المشھورة للغاية مثل ترجمأساس ا ھيالمعالجة الآلية للغة المجالات. إن مھام 

 .وحتى في أجھزة التعرف على الصوت في عالم الھواتف المحمولة ،أمازون'‘ مثلكبرى التجارية ال

والتي  لإحصائية،اعلى البيانات. يتم استخدام بيانات اللغة لتقدير النماذج  تعتمدالمعالجة الآلية للغة معظم تطبيقات  الحاضر،في الوقت 

أي نموذج  سابحيعتمد  ،الحالاتلجديدة التي ربما لم يسبق رؤيتھا. في أبسط يتم استخدامھا بعد ذلك في إجراء تنبؤات حول البيانات ا

 .بياناتلل المشكلةالوحدات  عدَ إحصائي على المھمة الأساسية المتمثلة في 

ھو لھائل لكم ااأصبحت النصوص متاحة بكميات كبيرة جدا. ھذا  البشرية،مع التوسع في الإنترنت وتدخلھا في جميع جوانب الحياة 

واجه ھذه ت أخرى،والأمثلة غير المرئية. من ناحية  ومقاومة للتشويشلأنه يوسع التغطية ويجعل النموذج أكثر قوة  للغاية، يء مفيدش

النموذج  حجم حيث من المحتمل جدًا ألا يتناسب ،في الجھاز الحاسبتحديًا جديدًا كميات كبيرة من البيانات على التي تحتوي  لأنظمةا

 .الذاكرة الخارجية (القرص) يُفعل دور نااھھوئيسية. مع الذاكرة الر

يدة للغاية في مفأنھا جزاء من البيانات أثناء العمل على أجزاء أخرى في الذاكرة الرئيسية الأ حفظ بعضأثبتت فكرة استغلال الأقراص ل

جمة الآلية أو مثل التر ،تباكيلكثرة التر م بيانات التدريبالمھام التي قد تضخ الخصوص،. على وجه تطبيقات معالجة اللغةن العديد م

دا في شائعة جالفإن الحلول الموجودة لھذا الغرض لا تستفيد استفادة كاملة من البنى الموازية  علمنا،على حد  ذلك،نمذجة اللغة. ومع 

 .الوقت الحاضر

 مكتبةاعتماداً على نحن نبني الحل  غرام)-(ن الذاكرة الخارجية في عد استعمال ھذا العمل ھو خطوة أولى نحو الجمع بين التوازي مع

)STXXL(،  مع دعم التوازي في مستوى للاستخدام،والتي تتيح الوصول إلى العديد من ھياكل بيانات الذاكرة الخارجية الجاھزة 

 انويةاب باستخدام الحس يستخدممن خلال توزيع الحساب على العديد من الأجھزة كل منھا  أخرى،نذھب خطوة ثم  .الادخال/والاخراج

 والذي يمكن أن يؤدي إلى الاعتماد على مجموعات البيانات الكبيرة على أجھزة للغاية،وازٍ ت. والنتيجة ھي حل م (threads)متعددة

 .واحدقرص ذات  أضعاف السرعة على حل واحد لوحدة 4لنا ما يصل إلى يمكن أن يحقق الحل الذي قدمناه محدودة. موارد ذات 

أن المفردات ليست أكبر  تقوم بافتراضلقيود التالية: لديھا ا ) KenLM مثل(المنتجات البرمجية التي تؤدي ھذه المھمة  رفتنا،لمعوفقًا 

 .توازي ولا تدعم نموذج القرص المتوازيمال التوزيع لا تدعمو ،الرئيسية ذاكرة المن 

 دمنااستخو ،كثيرة جدامفردات القدرة على دعم  نحنابھدف مھذه القيود عن طريق فھرسة النص  حل للتغلب علىيھدف عملنا 

)STXXL( توازيمال التوزيع لدعم ةصر مختلفاواستخدام عن المتوازي،منحنا القدرة على دعم نموذج القرص  بھدف. 

 .لتطبيق حلولنا المستخدم الفعال الأداءذات تقنيات الالعديد من  لرسالةتصف ھذه ا

   .القرص ،النصوص ،STXXLالطبيعية، _تاللغا_مذكرة، معالجة الكلمات الرئيسية:
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1.1. Introduction 

People communicate in many different ways: through speaking and listening, making gestures, 

using specialised hand signals (such as when driving or directing traffic), or through various 

forms of text.  

By text we mean words that are written or printed on a flat surface (paper, card, street signs and 

so on) or displayed on a screen or electronic device in order to be read by their intended recipient 

(or by whoever happens to be passing by). Will a computer program ever be able to convert a 

piece of text into a programmer friendly data structure, which describes the meaning of the 

natural language text? Unfortunately, no consensus has emerged about the form or the existence 

of such a data structure. Until such fundamental Artificial Intelligence problems are resolved, 

computer scientists must settle for the reduced objective of extracting simpler representations 

that describe limited aspects of the textual information. These simpler representations are often 

motivated by specific applications, or by our belief that they capture something more general 

about natural language. They can describe syntactic information (e.g., part-of-speech tagging, 

chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role 

labelling, named entity extraction, and anaphora resolution). Text corpora have been manually 

annotated with such data structures in order to compare the performance of various systems. 

The availability of standard benchmarks has stimulated research in Natural Language 

Processing (NLP) and effective systems have been designed for all these tasks. Such systems 

are often viewed as software components for constructing real-world NLP solutions. 

Natural language processing is important for different reasons to different people. For some, it 

offers the utility of automatically harvesting arbitrary bits of knowledge from vast information 

resources that have only recently emerged. To others, it is a laboratory for the investigation of 

the human use of language--a primary cognitive ability--and its relation to thought.[1] 

1.2. Natural Language Processing (NLP) 

Natural Language Processing is a theoretically motivated range of computational techniques 

for analysing and representing naturally occurring texts at one or more levels of linguistic 

analysis for the purpose of achieving human-like language processing for a range of tasks or 

applications.[2] 

The goal of NLP is “to accomplish human-like language processing”. The choice of the word 

‘processing’ is very deliberate, and should not be replaced with ‘understanding’. Although the 
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field of NLP was originally referred to as Natural Language Understanding (NLU) in the early 

days of AI, it is well agreed today that while the goal of NLP is true NLU, that goal has not yet 

been accomplished. A full NLU System would be able to:  

1. Paraphrase an input text  

2. Translate the text into another language  

3. Answer questions about the contents of the text 

4. Draw inferences from the text  

While NLP has made serious inroads into accomplishing goals 1 to 3, the fact that NLP systems 

cannot, of themselves, draw inferences from text, NLU still remains the goal of NLP. There are 

more practical goals for NLP, many related to the particular application for which it is being 

utilized.[3] For example, an NLP-based IR system has the goal of providing more precise, 

complete information in response to a user’s real information need. The goal of the NLP system 

here is to represent the true meaning and intent of the user’s query, which can be expressed as 

naturally in everyday language as if they were speaking to a reference librarian. Also, the 

contents of the documents that are being searched will be represented at all their levels of 

meaning so that a true match between need and response can be found, no matter how either 

are expressed in their surface form.[4] 

In the next figure we will show you the NLP steps: 

 

 

 

 

 

 

 

 

Figure 1.1 : Natural Language Processing steps 

 

Lexical 
Analysis 

Syntactic 

Analysis 

Semantic 
Analysis 

Output 

Transformation 

Database 

Input 

Sentence 

Output 
Data 



CHAPTER 1                                                                                                 INTRODICTION 

4 
 

1.3. Corpora in NLP 

Corpus linguistics, a branch of linguistics that deals with building corpora and investigation of 

their data, has already celebrated its 55th anniversary counting from the appearance of the 

Brown corpus. The idea of corpora that contain big data has attracted scholars’ attention for a 

long time. During the last decade more and more corpora are being compiled automatically. 

From traditional text collections they vary both in their volume and content. This is closely 

related to the growing availability of technical resources and thus the gradually changing 

paradigm in corpus linguistics moving forward from “manual” approach to more automatic one. 

By a classical or traditional approach one can understand a compilation of corpora based on a 

previously described methodology: selection of texts involving their representativeness and 

balance, their correction, annotation and upload. New corpora contain in general texts that were 

automatically crawled from the Web. Researchers find it attractive to make statistical inferences 

on increasingly larger scope of data.[5] 

The first thing to do when we got access to a new corpus is to explore the content using some 

basic methods, typically by counting the words. We can find out which words are the most 

frequent in the corpus, and by ranking the words by corpus frequency we can study the 

distribution of the vocabulary of the corpus. By using normalized frequencies, we can make 

comparisons between different corpora. We can e.g., compare the vocabulary frequency 

distribution of English (British  National Corpus), Swedish (Stockholm-Umeå Corpus), and 

Swedish Sign Language (Swedish Sign  Language Corpus).[6] 

By using basic corpus linguistic tools, either built-in web interface tools for corpora such as 

COCA or BNC, or software such as AntConc, we can also look at recurring sequences of words 

or signs, either as sequences of tokens (called n-grams) or as collocations.[7] 

Starting with basic methods such as these, we can move on to study many aspects of language 

production using both quantitative and qualitative methods. However, there are limitations to 

what corpora can tell us. 

• No negative evidence: just because a word or a sign does not occur in a corpus (however 

large and well balanced) does not mean that the word or sign never can occur in the language. 

However, a representative corpus can show us what is central and typical in a language. 

The findings of a study can tell us something about the subset of language that is included in 

that corpus, but not necessarily about language as a whole. However, if the corpus is 
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representative of the language we are interested in we can make careful generalizations about 

the language. 

• A corpus can rarely provide explanations, and thus most corpus studies combine 

quantitative and qualitative work. Sometimes other methods, such as questionnaires, eye gaze 

or EEG experiments are better suited to answer a particular question. Sometimes a descriptive 

corpus study can give new ideas on what to look for using other methods.[8] 

To summarize: make sure that you select the right corpus for your study, find out as much as 

you can about the corpus, take the characteristics and limitations of the corpus into account, 

and make careful generalizations! 

Corpus analysis provides quantitative, reusable data, and an opportunity to test and challenge 

our ideas and intuitions about language. Further, analysis applied to corpora as transcriptions 

or other types of linguistic annotation can be checked for consistency and inter-annotator 

agreement, and the annotated corpus can be reviewed and reused by others.[9] 

Corpora are essential in particular for the study of spoken and signed language: while written 

language can be studied by examining the text, speech, signs and gestures disappear when they 

have been produced and thus, we need multimodal corpora in order to study interactive face-

to- face communication.[10] 

The proportions suggested above relate to the characteristics of general reference corpora, and 

they do not necessarily hold good for other kinds of corpus. For example, it is reasonable to 

suppose that a corpus that is specialised within a certain subject area will have a greater 

concentration of vocabulary than a broad-ranging corpus, and that is certainly the case of a 

corpus of the English of Computing Science (James et al 1994). It is a million words in length, 

and some comparisons with a general corpus of the same length (the LOB corpus) are given in 

Table 1 (the corpus of English of Computing Science is designated as 'HK').[11] 
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 LOB HK % 

Number of different word-forms (types) 69990 27210 39 

Number that occur once only 36796 11430 31 

Number that occur twice only 9890 3837 39 

Twenty times or more 4750 3811 80 

200 times or more 471 687 69 

Table 1. 1 Comparison of frequencies in a general and a specialised corpus. 

 

The number of different word forms, which is a rough estimate of the size of the vocabulary, is 

far less in the specialised text than it is in the general one — less than 40% of its size. The 

proportion of single occurrences is another indication of the spread of the vocabulary, and here 

the proportional difference between the two corpora is even greater, with the specialised corpus 

having only 31% of the total of the other corpus. Word forms which occur twice are also much 

less common in the specialised corpus, but the gap closes quite dramatically when we look at 

the figures for twenty occurrences. At a frequency of 200 and above the proportions are the 

other way round, and the general corpus has only 69% of the number of such words in the 

specialised corpus. Assuming that the distribution of the extremely common words is similar 

in the two corpora, these figures suggest that the specialised corpus highlights a small, probably 

technical vocabulary.[12] 

This is only one example, but it is good news for builders of specialised corpora, in that not 

only are they likely to contain fewer words in all, but it seems as if the characteristic vocabulary 

of the special area is prominently featured in the frequency lists, and therefore that a much 

smaller corpus will be needed for typical studies than is needed for a general view of the 

language.[13] 

1.4. Size of DATA 

The minimum size of a corpus depends on two main factors: the kind of query that is anticipated 

from users, and the methodology they use to study the data. 

There is no maximum size. We will begin with the kind of figures found in general reference 

corpora, but the principles are the same, no matter how large or small the corpus happens to be. 
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To relate the kind of query to the size of the corpus, it is best to start with a list of the "objects" 

that you intend to study; the usual objects are the physical word forms or objects created by 

tags, such as lemmas. Then try them out on one of the corpora that is easy to interrogate, such 

as the million-word corpora on the ICAME CD-ROM (Hofland 1999).[14] The Brown-group 

of corpora are helpful here, because they have been proof-read and tagged and edited over many 

years, and with a million words the sums are easy. 

To illustrate how this can be done, let us take the simple case of a researcher wishing to 

investigate the vocabulary of a corpus. For any corpus one of the first and simplest queries is a 

list of word forms, which can be organised in frequency order. (NB word forms are not lemmas, 

where the various inflections of a "word" in the everyday sense are gathered together, but the 

message would not be much different with lemmas.[15] 

The frequencies follow Zipf's Law (1935), which basically means that about half of them occur 

once only, a quarter twice only, and so on. So for the first million-word corpus of general written 

American English (the Brown corpus), there was a vocabulary of different word forms of 

69002, of which 35065 occurred once only. At the other end of the frequency scale, the 

commonest word, the has a frequency of 69970, which is almost twice as common as the next 

one, of, at 36410.[16] 

There is very little point in studying words with one occurrence, except in specialised research, 

for example authorship studies (Morton 1986). Recurrence — a frequency of two or more — is 

the minimum to establish a case for being an independent unit of the language; but only two 

occurrences will tell us very little indeed about the word. At this point the researcher must fix 

a minimum frequency below which the word form will not be the object of study. Let us suggest 

some outline figures that may guide practice. A word which is not specially ambiguous will 

require at least twenty instances for even an outline description of its behaviour to be compiled 

by trained lexicographers. But there are other factors to consider, the consequences of what 

seems to be a general point that alternatives — members of a set or system — are often not 

equally likely. The same tendency that we see in Zipf's Law is found in many other places in 

the numerical analysis of a corpus. Very often the main meaning or use or grammatical choice 

of a word is many times as frequent as the next one, and so on, so that twenty occurrences may 

be sufficient for the principal meaning of a word, while some quite familiar senses may occur 

only seldom. This applies also to frequent words which can have some important meanings or 

uses which are much less common than the principal ones. Word classes occur in very different 
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proportions, so if the word can be both noun and verb, the verb uses are likely to be swamped 

by the noun ones, and for the verb uses researchers often have recourse to a tagged corpus. In 

many grammatical systems one choice is nine times as common as the other, so that for every 

negative there are nine positives.[17] 

So some additional leeway will have to be built in to cope with such contingencies. If the objects 

of study are lemmas rather than word forms, the picture is not very different. The minimum 

number of instances needed for a rough outline of usage will rise to an average of about fifty 

for English (but many more for highly inflected languages).[18] 

If the research is about events which are more complicated than just word occurrence, then the 

estimate of a suitable corpus size will also get more complicated. For example if the research 

is about multi-word phrases, it must be remembered that the occurrence of two or more words 

together is inherently far rarer than either on its own. So if each of the two words in a minimal 

phrase occur 20 times in a million word corpus, for 20 instances of the two together the 

arithmetic suggests a corpus of approximately 5 billion words will be needed. For three words 

together of this frequency the size of the corpus could be beyond our imaginings.[19] 

However, words do not occur according to the laws of chance, and if the phrases chosen are 

normal ones in the language, they will occur many times more often than the arithmetic 

projection above; so a much smaller corpus is likely to contain sufficient instances. To estimate 

roughly the size of a corpus for retrieval of a combination of two objects, first estimate the size 

you will need for the less common object on its own and then raise that figure by an order of 

magnitude. If there are 20 instances per million words for each of two words in a phrase, then 

twenty million words is likely to provide 20 instances of the pair (rather than the 5 billion 

projected by the arithmetic); if there are three of this frequency than 200 million words will 

probably be enough.[ 19] 

These are the kinds of figures that you will need to use in estimates of your optimal corpus size. 

Now we must build in the considerations of the methodology that you intend to use, because 

this can have a dramatic effect on the size.[ 19] 

The main methodological point is whether, having examined directly the initial results of corpus 

searches you intend to return to indirect methods and use the computer for further stages, 

recycling and refining early results6. If the latter, you will have to increase the minimum 

number of occurrences of your object quite substantially. This is because the regularities of 

occurrence that the machine will search for are not on the surface, and the way the computer 
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works is to examine the contexts minutely searching for frequently repeated patterns. Having 

found these it can then isolate instances of unusual and particular co-occurrences, which can 

either be discarded or studied separately after the main patterns have been described. For 

example, if the computer searches for the adjectives that come between in and trouble, in text 

sequence (Bank of English 17/10/04)[20] these are: ( Unspecified, terrible, deep, serious, Cuba, 

serious, serious, great...) . 

It is reasonable already to anticipate that deep and serious are likely to be important recurrent 

collocates, but single instances of the others do not offer useful evidence. In fact unspecified 

does not recur, terrible is a good collocate, with 33 instances out of 1729. Deep is an important 

collocate with 251 instances, 14.5%, while Cuba is unique, serious is slightly greater than deep 

at 271. Great, on the other hand, scores merely 8. The next in sequence is big, which at 235 

instances is up with deep and serious. As we examine more and more instances, these three 

adjectives gradually separate themselves from all the others because of the number of times 

they appear — in total (757), almost half of all the instances. The nearest contender is real, at 

142 quite considerably less common, and after that financial at 113. The computer also records 

as significant collocates terrible (35), dire (31) and desperate (28); deeper (14), double (14), 

foul (11), bad (14), such (28), enough (17) and worse (11).[20] 

The pure frequency picks out the three or four collocates that are closely associated with the 

phrase in trouble, and reference to the statistical test (here the t-score) adds another dozen or so 

adjectives which, while less common in the pattern are still significantly associated and add to 

the general gloom that surrounds the phrase. Single occurrences like unspecified and Cuba drop 

into obscurity, as do terminal (2) and severe (4), which occur among the first 30 instances. 

The density of the patterns of collocation is one of the determinants of the optimal size of a 

corpus. Other factors include the range of ambiguity of a word chosen, and sometimes its 

distribution among the corpus components. 

If you intend to continue examining the first results using the computer, you will probably need 

several hundred instances of the simplest objects, so that the programs can penetrate below the 

surface variation and isolate the generalities. The more you can gather, the clearer and more 

accurate will be the picture that you get of the language.[21] 
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1.5. Related work 

To the best of our knowledge, KenLM is the only public software which perform n-gram 

counting and language modelling using external memory. It was created to allow training very 

large language models on machines with limited memory resources. It computes the n-gram 

probabilities using an important number of sorting over the set of all n-grams. 

KenLM defines a language model state object that speeds up the process of calculating language 

model probability. A state object consists of context words, back-offs and length. KenLM does 

use external memory for extract large corpora [22]. However, it doesn’t support the parallelism, 

neither on the disk level nor on the processing level. Moreover, it assumes that the underlying 

vocabulary fits into main memory. In this work, we try to perform the counting step without 

these assumptions. Furthermore, we support parallelism both on the disk level and on the 

processing level. 

1.6. External Memory For large datasets        

As, mentioned before, dealing with very large corpora imposes using external memory to hold 

parts of the dataset while the processor is busy treating the parts kept in memory. However, in 

such scenario, retrieving identical data chunks (as needed in counting) would be a very 

expensive operation. It is a common practice to sort the large dataset (of course with the help 

of the external memory), so that a simple scan over the data would solve the retrieval problem. 

We can’t sort 1TB of data with 1GB of RAM (i.e., more data than available memory) in main 

memory because main memory is volatile. We want data to be saved between runs, and the data 

size great than the memory size that is great then address space. 

The typical storage hierarchy is : CPU Registers – temporary variables, Cache – Fast copies of 

frequently accessed memory locations (Cache and memory should indistinguishable), Main 

memory (RAM) for currently used “addressable” data, and Disk for the main “big data” 

(secondary storage). 

Solution:  Utilize an External Sorting Algorithm, External sorting refers to the sorting of a file 

that resides on secondary memory (e.g., disk, flash, etc) ,in other side Internal sorting refers to 

the sorting of an array of data that is in RAM . 
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Objective: Minimize number of I/O accesses, external Sorting is part of the Query Evaluation, 

optimization subsystem and efficient Sorting algorithms can speed up query evaluation plans 

(e.g., during joins) [23] 

1.7. External sorting 

External Sorting Many important sorting applications involve processing very large files, much 

too large to fit into the primary memory of any computer. Methods appropriate for such 

applications are called external methods, since they involve a large amount of processing 

external to the central processing unit. There are two major factors which make external 

algorithms quite different:  

First, the cost of accessing an item is orders of magnitude greater than any bookkeeping or 

calculating costs. [24] 

Second, over and above with this higher cost, there are severe restrictions on access, depending 

on the external storage medium used: for example, items on a magnetic tape can be accessed 

only in a sequential manner.  

The wide variety of external storage device types and costs makes the development of external 

sorting methods very dependent on current technology. These methods can be complicated, and 

many parameters affect their performance: that a clever method might go unappreciated or 

unused because of a simple change in the technology is a definite possibility in external sorting. 

For this reason, only general methods will be considered rather than specific implementations. 

For external sorting, the "systems" aspect of the problem is certainly as important as the 

"algorithms" aspect. Both areas must be carefully considered if an effective external sort is to 

be developed. The primary costs in external sorting are for input-output. A good exercise for 

someone planning to implement an efficient program to sort a very large file is first to 

implement an efficient program to copy a large file, then (if that was too easy) implement an 

efficient program to reverse the order of the elements in a large file. The systems problems that 

arise in trying to solve these problems efficiently are similar to those that arise in external sorts. 

Permuting a large external file in any non-trivial way is about as difficult as sorting it, even 

though no key comparisons, etc. are required. In external sorting, we are concerned mainly with 

limiting the number of times each piece of data is moved between the external storage medium 

and the primary memory, and being sure that such transfers are done as efficiently as allowed 

by the available hardware. External sorting methods have been developed which are suitable 
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for the punched cards and paper tape of the past, the magnetic tapes and disks of the present, 

and emerging technologies such as bubble memories and videodisks. The essential differences 

among the various devices are the relative size and speed of available storage and the types of 

data access restrictions. We'll concentrate on basic methods for sorting on magnetic tape and 

disk because these devices are in widespread use and illustrate the two fundamentally different 

modes of access that characterize many external storage systems. Often, modern computer 

systems have a "storage hierarchy" of several progressively slower, cheaper, and larger 

memories. Many of the algorithms can be adapted to run well in such an environment, but we'll 

deal exclusively with "two-level" memory hierarchies consisting of main memory and disk or 

tape.[25] 

1.8. Conclusions 

This chapter describes an example of integration between big data and text analysis techniques 

that can provide inspiration for future research. The possibility of quickly extracting a (well- 

defined) selection of tweets and computing variables associated to them is a promising starting 

point for research.  

Analysis techniques that do not require language resources, such as repeated segments detection 

and extraction of characteristic words, can be applied more straightforwardly as they do not 

pose limitations on the language to select. Among the resources that are more specific to text 

analysis the use of the positive-negative dictionary included in Taltac2 was particularly useful 

for classifying the mood of the text, especially in the presence of events of high media coverage 

and emotional impact. 

The recognition of hashtags can be considered an added value also in the analysis of content 

and user profiles, for example analysing the number of “#” in a text or the way they are used 

(attached to words in the text or as separated tags). The same can be said about the use of other 

special characters, such as “@” for targeting other users or links to images and web pages. 

The results of the analysis are unavoidably influenced by the use of a geographical filter on the 

source. However, the concentration of major media and political influencers makes the selected 

sample highly representative for what concerns the different types of users in an explorative 

analysis. Nevertheless, future work could explore the effect of different or wider geographical 

selections of publication place. [26] 
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2.1 INTRODUCTION 

Massive data sets arise naturally in many domains. Spatial data bases of geographic information 

systems like Google Earth and NASA’s World Wind store terabytes of geographically-

referenced information that includes the whole Earth. In computer graphics one has to visualize 

highly complex scenes using only a conventional workstation with limited memory. Billing 

systems of telecommunication companies evaluate terabytes of phone call log files. One is 

interested in analysing huge network instances like a web graph or a phone call graph. Search 

engines like Google and Yahoo provide fast text search in their data bases indexing billions of 

web pages. A precise simulation of the Earth’s climate needs to manipulate with petabytes of 

data. These examples are only a sample of numerous applications which have to process vast 

amounts of data. [27] 

The internal memories of computers can keep only a small fraction of these large data sets. 

During the processing the applications need to access the external memory (e. g. hard disks) 

very frequently. One such access can be about 106 times slower than a main memory access. 

Therefore, the disk accesses (I/Os) become the main bottleneck.  

The data is stored on the magnetic surface of a hard disk that rotates 4200– 15000 times per 

minute. In order to read or write a designated track of data, the disk controller moves the 

read/write arm to the position of this track (seek latency). If only a part of the track is needed, 

there is an additional rotational delay. The total time for such a disk access is an average of 3–

10 ms for modern disks. The latency depends on the size and rotational speed of the disk and 

can hardly be reduced because of the mechanical nature of hard disk technology. After placing 

the read/write arm, the data is streamed at a high speed which is limited only by the surface 

data density and the bandwidth of the I/O interface. This speed is called sustained throughput 

and achieves up to 80 MByte/s nowadays. In order to amortize the high seek latency, one reads 

or writes the data in blocks. The block size is balanced when the seek latency is a fraction of 

the sustained transfer time for the block. Good results show blocks containing a full track. For 

older low density disks of the early 90’s the track capacities were about 16-64 KB. Nowadays, 

disk tracks have a capacity of several megabytes. 

Operating systems implement the virtual memory mechanism that extends the working space 

for applications, mapping an external memory file (page/swap file) to virtual addresses. This 

idea supports the Random Access Machine model in which a program has an infinitely large 

main memory. With virtual memory the application does not know where its data is located: in 
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the main memory or in the swap file. This abstraction does not have large running time penalties 

for simple sequential access patterns: The operating system is even able to predict them and to 

load the data in ahead. For more complicated patterns these remedies are not useful and even 

counterproductive: the swap file is accessed very frequently; the executable code can be 

swapped out in favour of unnecessary data; the swap file is highly fragmented and thus many 

random I/O operations are needed even for scanning. [27] 

2.2 I/O-efficient algorithms and models 

The operating system cannot adapt to complicated access patterns of applications dealing with 

massive data sets. Therefore, there is a need of explicit handling of external memory accesses. 

The applications and their underlying algorithms and data structures should care about the 

pattern and the number of external memory accesses (I/Os) which they cause. 

Several simple models have been introduced for designing I/O-efficient algorithms and data 

structures (also called external memory algorithms and data structures). The most popular and 

realistic model is the Parallel Disk Model (PDM) of Vitter and Shriver. In this model, I/Os are 

handled explicitly by the application. An I/O operation transfers a block of B consecutive 

elements from/to a disk to amortize the latency. [28] 

 

 

 

 

Figure 2.1 Schemes of parallel disk model (left) and memory hierarchy (right). 

The application tries to transfer D blocks between the main memory of size M bytes and D 

independent disks in one I/O step to improve bandwidth, see Figure 1. The input size is N bytes 

which is (much) larger than M. The main complexity metrics of an I/O-efficient algorithm in 

PDM are the number of I/O steps (main metric) and the number of operations executed by the 
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CPU. If not I/O but a slow internal CPU processing is the limiting factor of the performance of 

an application, we call such behaviour CPU-bound. 

The PDM measures the transfers between the main memory and the hard disks, however, in 

modern architectures, the CPU does not access the main memory directly. There are a few levels 

of faster memory caches in-between (Figure 1): CPU registers, level one (L2), level two (L2) 

and even level three (L3) caches. The main memory is cheaper and slower than the caches. 

Cheap dynamic random access memory, used in the majority of computer systems, has an 

access latency up to 60 ns whereas L1 has a latency of less than a ns. However, for a streamed 

access a high bandwidth of several GByte/s can be achieved. The discrepancy between the 

speed of CPUs and the latency of the lower hierarchy levels grows very quickly: the speed of 

processors is improved by about 55 % yearly, the hard disk access latency only by 9 % . 

Therefore, the algorithms which are aware of the memory hierarchy will continue to benefit in 

the future and the development of such algorithms is an important trend in computer science. 

The PDM model only describes a single level in the hierarchy. An algorithm tuned to make a 

minimum number of I/Os between two particular levels could be I/O-inefficient on other levels.  

The cache-oblivious model in avoids this problem by not providing the knowledge of the block 

size B and main memory size M to the algorithm. The benefit of such an algorithm is that it is 

I/O-efficient on all levels of the memory hierarchy across many systems without fine tuning for 

any particular real machine parameters. Many basic algorithms and data structures have been 

designed for this model. A drawback of cache-oblivious algorithms playing a role in practice is 

that they are only asymptotically I/O-optimal. The constants hidden in the O-notation of their 

I/O-complexity are significantly larger than the constants of the corresponding I/O-efficient 

PDM algorithms (on a particular memory hierarchy level). For instance, a tuned cache-

oblivious funnel sort implementation is 2.6–4.0 times slower than our I/O-efficient sorter from 

STXXL for out-of-memory inputs . A similar funnel sort implementation is up to two times 

slower than the I/O-efficient sorter from the TPIE library for large inputs. The reason for this 

is that these I/O-efficient sorters are highly optimized to minimize the number of transfers 

between the main memory and the hard disks where the imbalance in the access latency is the 

largest. Cache-oblivious implementations tend to lose on the inputs, exceeding the main 

memory size, because they do (a constant factor) more I/Os at the last level of memory 

hierarchy. In this paper we concentrate on extremely large out-of- memory inputs, therefore we 

will design and implement algorithms and data structures efficient in the PDM. [28] 
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2.2.1 Algorithm engineering for large data sets 

Theoretically, I/O-efficient algorithms and data structures have been developed for many 

problem domains: graph algorithms, string processing, computational geometry, etc. (see the 

surveys). Some of them have been implemented: sorting, matrix multiplication, search trees, 

priority queues , text processing . However only few of the existing I/O-efficient algorithms 

have been studied experimentally. As new algorithmic results rely on previous ones, 

researchers, which would like to engineer practical implementations of their ideas and show the 

feasibility of external memory computation for the solved problem, need to invest much time 

in the careful design of unimplemented underlying external algorithms and data structures. 

Additionally, since I/O-efficient algorithms deal with hard disks, a good knowledge of low-

level operating system issues is required when implementing details of I/O accesses and file 

system management. This delays the transfer of theoretical results into practical applications, 

which will have a tangible impact for industry. Therefore one of the primary goals of algorithm 

engineering for large data sets is to create software frameworks and libraries which handle both 

the low-level I/O details efficiently and in an abstract way, and provide well-engineered and 

robust implementations of basic external memory algorithms and data structures.[27] 

2.2.2 C++ standard template library 

The Standard Template Library (STL) is a C++ library which is included in every C++ compiler 

distribution. It provides basic data structures (called containers) and algorithms. STL containers 

are generic and can store any built-in or user data type that supports some elementary operations 

(e.g. copying and assignment). STL algorithms are not bound to a particular container: an 

algorithm can be applied to any container that supports the operations required for this 

algorithm (e.g. random access to its elements). This flexibility significantly reduces the 

complexity of the library. 

STL is based on the C++ template mechanism. The flexibility is supported using compile-time 

polymorphism rather than the object oriented run-time polymorphism. The run-time 

polymorphism is implemented in languages like C++ with the help of virtual functions that 

usually cannot be inlined by C++ compilers. This results in a high per-element penalty of calling 

a virtual function. In contrast, modern C++ compilers minimize the abstraction penalty of STL 

inlining many functions. 
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STL containers include: std::vector (an unbounded array), std::priority queue, std::list, 

std::stack, std::deque, std::set, std::multiset (allows duplicate elements), std::map (allows 

mapping from one data item (a key) to another (a value)), std::multimap (allows  duplicate  

keys),  etc.  Containers  based  on  hashing  (hash set, hash multiset, hash map and hash 

multimap) are not yet standardized and distributed as an STL extension. 

Iterators are an important part of the STL library. An iterator is a kind of handle used to access 

items stored in data structures. Iterators offer the following operations: read/write the value 

pointed by the iterator, move to the next/previous element in the container, move by some 

number of elements forward/backward (random access). [28] 

STL provides a large number of algorithms that perform scanning, searching and sorting. The 

implementations accept iterators that posses a certain set of operations described above. Thus, 

the STL algorithms will work on any container with iterators following the requirements. To 

achieve flexibility, STL algorithms are parameterized with objects, overloading the function 

operator (operator()). Such objects are called functors. A functor can, for instance, define the 

sorting order for the STL sorting algorithm or keep the state information in functions passed to 

other functions. Since the type of the functor is a template parameter of an STL algorithm, the 

function operator does not need to be virtual and can easily be inlined by the compiler, thus 

avoiding the function call costs. 

The STL library is well accepted and its generic approach and principles are followed in other 

famous C++ libraries like Boost and CGAL. [28] 

2.2.3 The goals of STXXL 

Several external memory software library projects (LEDA-SM and TPIE) were started to reduce 

the gap between theory and practice in external memory computing. They offer frameworks 

which aim to speed up the process of implementing I/O-efficient algorithms, abstracting away 

the details of how I/O is performed.  

The motivation for another project, namely STXXL, was that an easier to use and higher 

performance library was needed. Here are a number of key new or improved features of 

STXXL: 

 Transparent support of parallel disks. The library provides implementations of basic 

parallel disk algorithms. STXXL is the only external memory algorithm library 

supporting parallel disks. Such a feature was announced for TPIE in 1996. 
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 The library is able to handle problems of a very large size (up to dozens of terabytes). 

 Improved utilization of computer resources. STXXL explicit supports overlapping 

between I/O and computation. STXXL implementations of external memory algorithms 

and data structures benefit from the overlapping of I/O and computation. 

 STXXL achieves small constant factors in I/O volume. In particular, “pipelining” can 

save more than half the number of I/Os performed by many algorithms. 

 Short development times due to well-known STL-compatible interfaces for external 

memory algorithms and data structures. STL algorithms can be directly applied to 

STXXL containers (code reuse); moreover, the I/O complexity of the algorithms 

remains optimal in most cases. [27] 

2.2.4 Overview 

The chapter is structured as follows. Section 3 overviews the design of STXXL. We explain the 

design decisions we have made to achieve high performance in Sections 4–6 in detail. Section 

7 engineers an efficient parallel disk sorting, which is the most important component of an 

external memory library. The concept of algorithm pipelining is described in Section 8. The 

design of our implementation of pipelining is presented in Section 9. Section 10 gives a short 

overview of the projects using STXXL. We make some concluding remarks and point out the 

directions of future work in Section 11. 

The shortened preliminary material of this paper has been published in conference proceedings. 

2.3 THE DESIGN OF THE STXXL LIBRARY 

STXXL is a layered library consisting of three layers (see Figure 2). The lowest layer, the 

Asynchronous I/O primitives layer (AIO layer), abstracts away the details of how asynchronous 

I/O is performed on a particular operating system. Other existing external memory algorithm 

libraries only rely on synchronous I/O APIs or allow reading ahead sequences stored in a file 

using the POSIX asynchronous I/O API . These libraries also rely on uncontrolled operating 

system I/O caching and buffering in order to overlap I/O and computation in some way. 

However, this approach has significant performance penalties for accesses without locality. 

Unfortunately, the asynchronous I/O APIs are very different for different operating systems 

(e.g. POSIX AIO and Win32 Overlapped I/O). Therefore, we have introduced the AIO layer 

was introduces to make porting STXXL easy. Porting the whole library to a different platform 
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requires only implementing the thin AIO layer using native file access methods and/or native 

multithreading mechanisms. 

The Block Management layer (BM layer) provides a programming interface emulating the 

parallel disk model. The BM layer provides an abstraction for a fundamental concept in the 

external memory algorithm design — a block of elements. The block manager implements 

block allocation/deallocation, allowing several block-to-disk assignment strategies: striping, 

randomized striping, randomized cycling, etc. The block management layer provides an 

implementation of parallel disk buffered writing, optimal prefetching, and block caching. The 

implementations are fully asynchronous and designed to explicitly support overlapping 

between I/O and computation. 

The top of STXXL consists of two modules. The STL-user layer provides external memory 

sorting, external memory stack, external memory priority queue, etc. which have (almost) the 

same interfaces. [27] 

  

Figure 2.2. Structure of STXXL 

 

(including syntax and semantics) as their STL counterparts. The Streaming layer provides 

efficient support for pipelining external memory algorithms. Many external memory 

algorithms, implemented using this layer, can save a factor of 2–3 in I/Os. For example, the 

algorithms for external memory suffix array construction implemented with this module require 

only 1/3 of the number of I/Os which must be performed by implementations that use 

conventional data structures and algorithms (either from the STXXL STL-user layer, LEDA-

SM, or TPIE). The win is due to an efficient interface that couples the input and the output of 
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the algorithm–components (scans, sorts, etc.). The output from an algorithm is directly fed into 

another algorithm as input, without needing to store it on the disk in-between. This generic 

pipelining interface is the first of this kind for external memory algorithms. 

2.4 AIO LAYER 

The purpose of the AIO layer is to provide a unified approach to asynchronous I/O. The layer 

hides details of native asynchronous I/O interfaces of an operating system. Studying the patterns 

of I/O accesses of external memory algorithms and data structures, we have identified the 

following functionality that should be provided by the AIO layer: 

• To issue read and write requests without having to wait for them to be completed. 

• To wait for the completion of a subset of issued I/O requests. 

• To wait for the completion of at least one request from a subset of issued I/O requests. 

• To poll the completion status of any I/O request. 

• To  assign  a  callback  function  to  an  I/O  request  which  is  called  upon  I/O  

completion (asynchronous notification of completion status), with the ability to co-relate 

callback events with the issued I/O requests. [28] 

2.5 BM LAYER 

The BM layer includes a toolbox for allocating, deallocating, buffered writing, prefetching, and 

caching of blocks. The external memory manager (object block manager) is responsible for 

allocating and deallocating external memory space on disks. The manager supports four parallel 

disk allocation strategies: simple striping, fully randomized, simple randomized, and 

randomized cycling. 

2.6 STL-USER LAYER 

When we started to develop the library we decided to equip our implementations of external 

memory data structures and algorithms with well known generic interfaces of the Standard 

Template Library, which is a part of the C++ standard. This choice would shorten the 

application development times, since the time to learn new interfaces is saved. Porting an 

internal memory code that relies on STL would also be easy, since interfaces of STL-user layer 
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data structures (containers in the STL terminology) and algorithms have the same syntax and 

semantics. We go over the containers currently available in STXXL. [27] 

2.6.1 Vector 

STL vector is an array, supporting random access to elements, constant time insertion and 

removal of elements at the end. The size of a vector may vary dynamically. The implementation 

of stxxl::vector is similar to the LEDA-SM array. The content of a vector is striped block wise 

over the disks, using an assignment strategy given as a template parameter. Some of the blocks 

are cached in a vector cache of fixed size (also a parameter). The replacement of cache blocks 

is controlled by a specified page-replacement strategy. STXXL has implementations of LRU 

and random replacement strategies. The user can provide his/her own strategy as well. The 

STXXL vector has STL-compatible Random Access Iterators. One random access costs O(1) 

I/Os in the worst case. Sequential scanning of the vector costs O(1/DB) amortized I/Os per 

vector element. 

2.6.2 Stack 

A stack is a LIFO data structure that provides insertion, removal, and inspection of the element 

at the top of the stack. Due to the restricted set of operations a stack can be implemented I/O-

efficiently and applied in many external memory algorithms. Four implementations of a stack 

are available in STXXL, which are optimized for different access patterns (long or short random 

insert/remove sequences) and manage their memory space differently (own or shared block 

pools). Some of the implementations (e.g. stxxl::grow shrink stack2) are optimized to prefetch 

data ahead and to queue writing, efficiently overlapping I/O and computation. The amortized 

I/O complexity for push and pop stack operations is O (1/DB). [28] 

2.6.3 Queue and Deque 

The design STXXL FIFO queue of is similar to stxxl::grow shrink stack2. The implementation 

holds the head and the tail blocks in the main memory. Prefetch and write block pools are used 

to overlap I/O and computation during queue operations. 

The STXXL implementation of external memory deque is an adaptor of an (external memory) 

vector. This implementation wraps the elements around the end of the vector circularly. It 

provides the pop/push operations from/to both ends of the deque in O(1/DB) amortized I/Os if 

parameterized with a properly configured stxxl::vector. 



CHAPTER 2                                                                                                                   STXXL 

23 
 

2.6.4 Priority queue 

External memory priority queues are the central data structures for many I/O efficient graph 

algorithms. The main technique in these algorithms is time-forward processing, easily 

realizable by an I/O efficient priority queue. This approach evaluates a DAG with labelled 

nodes. 

2.6.5 Map 

The map is an STL interface for search trees with unique keys. Implementation of map is a 

variant of a B+-tree data structure supporting the operations insert, erase, find, lower bound and 

upper bound. Operations of map use iterators to refer to the elements stored in the container, 

e.g. find and insert return an iterator pointing to the data. 

2.6.6 General issues concerning STXXL containers 

Similar to other external memory algorithm libraries, STXXL has the restriction that the data 

types stored in the containers cannot have C/C++ pointers or references to other elements of 

external memory containers. The reason is that these pointers and references get invalidated 

when the blocks containing the elements they point/refer to are written to disk. To get around 

this problem, the links can be kept in the form of external memory iterators (e.g. 

stxxl::vector::iterator). The iterators remain valid while storing to and loading from the external 

memory. When dereferencing an external memory iterator, the referenced object is loaded from 

external memory by the library on demand (if the object is not in the cache of the data structure 

already). [27] 

STXXL containers differ from STL containers in treating allocation and distinguishing between 

uninitialized and initialized memory. STXXL containers assume that the data types they store 

are plain old data types (POD). The constructors and destructors of the contained data types are 

not called when a container changes its size. The support of constructors and destructors would 

imply a significant I/O cost penalty, e.g. on the deallocation of a non-empty container, one has 

to load all contained objects and call their destructors. This restriction sounds more severe than 

it is, since external memory data structures cannot cope with custom dynamic memory 

management anyway, which is the common use of custom constructors/destructors. 
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2.6.7 Algorithms 

The algorithms of the STL can be divided into two groups by their memory access pattern: 

scanning algorithms and random access algorithms. 

Scanning algorithms: 

Scanning algorithms work with Input, Output, Forward, and Bidirectional iterators only. Since 

random access operations are not allowed with these kinds of iterators, the algorithms inherently 

exhibit a strong spatial locality of reference. STXXL containers and their iterators are STL-

compatible, therefore one can directly apply STL scanning algorithms to them, and they will 

run I/O-efficiently. Scanning algorithms are the majority of the STL algorithms. STXXL also 

offers specialized implementations of some scanning algorithms (stxxl::for each, 

stxxl::generate, etc.), which perform better in terms of constant factors in the I/O volume and 

internal CPU work. These implementations benefit from accessing lower level interfaces of the 

BM layer instead of using iterator interfaces, resulting in a smaller CPU overhead. Being aware 

of the sequential access pattern of the applied algorithm, the STXXL implementations can do 

prefetching and use queued writing, thereby leading to the overlapping of I/O with computation. 

2.7 PARALLEL DISK SORTING 

Sorting is the first component we have designed for STXXL, because it is the fundamental tool 

for I/O- efficient processing of large data sets. Therefore, an efficient implementation of sorting 

largely defines the performance of an external memory software library as a whole. To achieve 

the best performance our implementation [29] uses parallel disks,  

No previous implementation has all these properties, which are needed for a good practical 

sorting. LEDA-SM and TPIE concentrate on single disk implementations. For the overlapping 

of I/O and computation they rely on prefetching and caching provided by the operating system, 

which is suboptimal since it does not use prefetching information. 

Barve and Vitter implemented a parallel disk algorithm [30] that can be viewed as the 

immediate ancestor of our algorithm. Innovations with respect to our sorting are: a different 

allocation strategy that enables better theoretical I/O bounds; a prefetching algorithm that 

optimizes the number of I/O steps and never evicts data previously fetched; overlapping of I/O 

and computation; a completely asynchronous implementation that reacts flexibly to fluctuations 

in disk speeds; and an implementation that sorts many GBytes and does not have to limit 
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internal memory size artificially to obtain a nontrivial number of runs. Additionally, our 

implementation is not a prototype, it has a generic interface and is a part of the software library 

STXXL. 

Algorithms in [31] have the theoretical advantage of being deterministic. However, they need 

three passes over data even for relatively small inputs. 

Prefetch buffers for disk load balancing and overlapping of I/O and computation have been 

intensively studied for external memory merge sort. But we have not seen results that guarantee 

overlapping of I/O and computation during the parallel disk merging of arbitrary runs. 

2.7.1 Implementation details 

Runs are build of a size close to M/2 but there are some differences to the simple algorithm. 

Overlapping of I/O and computation is achieved using the call-back mechanism supported by 

the I/O layer. Thus, the sorter remains portable over different operating systems with different 

interfaces to threading. 

We have two implementations with respect to the internal work: stxxl::sort is a comparison 

based sorting using std::sort from STL to sort the runs internally;  

stxxl::ksort exploits integer keys and has smaller internal memory bandwidth requirements for 

large elements with small key fields. After reading elements, we extract pairs (key, 

pointerToElement), sort these pairs, and only then move elements in sorted order to write 

buffers from where they are output. For reading and writing we have used unbuffered direct file 

I/O. 

Furthermore, we exploit random keys. We use two passes of MSD (most significant digit) radix 

sort of the key-pointer pairs. The first pass uses the m most significant bits where m is a tuning 

parameter depending on the size of the processor caches and of the TLB (translation look-aside 

buffer). This pass consists of a counting phase that determines bucket sizes and a distribution 

phase that moves pairs. The counting phase is fused into a single loop with pair extraction. The 

second pass of radix sort uses a number of bits that brings us closest to an expected bucket size 

of two. This two-pass algorithm is much more cache efficient than a one-pass radix sort. The 

remaining buckets are sorted using a comparison based algorithm: Optimal straight line code 

for n ≤ 4, insertion sort for n ∈ {5..16}, and quicksort for n > 16. Multi-way Merging. We have 

adapted the tuned multi-way merger from , i.e. a tournament tree stores pointers to the current 

elements of each merge buffer. 



CHAPTER 2                                                                                                                   STXXL 

26 
 

Overlapping I/O and Computation. We integrate the prefetch buffer and the overlap buffer to a 

read buffer. We distribute the buffer space between the two purposes of minimizing disk idle 

time and overlapping I/O and computation indirectly by computing an optimal prefetch 

sequence for a smaller buffer space. 

Asynchronous I/O. I/O is performed without any synchronization between the disks. The 

prefetcher computes a sequence σ of blocks indicating the order in which blocks should be 

fetched. As soon as a buffer block becomes available for prefetching, it is used to generate an 

asynchronous read request for the next block in σ. The AIO layer queues this request at the disk 

storing the block to be fetched. The thread for this disk serves the queued request in FIFO 

manner. All I/O is implemented without superfluous copying. Blocks, fetched using unbuffered 

direct I/O, travel to the prefetch/overlap buffer and from there to a merge buffer simply by 

passing pointers to blocks. Similarly, when an element is merged, it is directly moved from the 

merge buffer to the write buffer and a block of the write buffer is passed to the output queue of 

a disk simply by passing a block pointer to the AIO layer that then uses unbuffered direct I/O 

to output the data. 

2.7.2 Discussion 

A sorting algorithm has been engineered that combines a very high performance on state of the 

art hardware with theoretical performance guarantees. This algorithm is compute-bound 

although we use small random keys and a tuned linear time algorithm for the run formation. 

Similar observations apply to other external memory algorithms that exhibit a good spatial 

locality, i.e. those dominated by scanning, sorting, and similar operations. This indicates that 

bandwidth is no longer a limiting factor for most external memory algorithms if parallel disks 

are used. 

2.8 ALGORITHM PIPELINING 

The pipelined processing technique is very well known in the database world. 

Usually, the interface of an external memory algorithm assumes that it reads the input from (an) 

external memory container(s) and writes output into (an) external memory container(s). The 

idea of pipelining is to equip the external memory algorithms with a new interface that allows 

them to feed the output as a data stream directly to the algorithm that consumes the output, 

rather than writing it to the external memory first. Logically, the input of an external memory 
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algorithm does not have to reside in the external memory, rather, it could be a data stream 

produced by another external memory algorithm. 

Many external memory algorithms can be viewed as a data flow through a directed acyclic 

graph G with node set V = F ∪ S ∪ R and edge set E . The file nodes F represent physical data 

sources and data sinks, which are stored on disks (e.g. in the external memory containers of the 

STL-user 

layer). A file node writes or/and reads one stream of elements. The streaming nodes S read zero, 

one or several streams and output zero, one or several new streams. Streaming nodes are 

equivalent to scan operations in non-pipelined external memory algorithms. The difference is 

that non-pipelined conventional scanning needs a linear number of I/Os, whereas streaming 

nodes usually do not perform any I/O, unless a node needs to access external memory data 

structures (stacks, priority queues, etc.). The sorting nodes R read a stream and output it in a 

sorted order. Edges E in the graph G denote the directions of data flow between nodes. 

2.9 STREAMING LAYER 

The streaming layer provides a framework for the pipelined processing of large sequences. To 

the best of our knowledge we are the first who apply the pipelining method systematically in 

the domain of external memory algorithms. We introduce it in the context of an external 

memory software library. 

In STXXL, all data flow node implementations have an STXXL stream interface which is 

similar to the STL Input iterators. As an input iterator, an STXXL stream object may be 

dereferenced to refer to some object and may be incremented to proceed to the next object in 

the stream. The reference obtained by dereferencing is read-only and must be convertible to the 

value type of the STXXL stream. The concept of the STXXL stream also defines a Boolean 

member function empty () which returns true if the end of the stream is reached. 
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2.10 STXXL APPLICATIONS 

The STXXL library already has users both in academia and industry. We know of at least 17 

institutions which apply the library for a wide range of problems including text processing, 

graph algorithms , gaussian elimination [32], visualization and analysis of 3D and 4D 

microscopic images, differential cryptographic analysis, computational geometry [33], 

topology analysis of large networks, statistics and time series analysis, and analysis of seismic 

files. 

STXXL has been successfully applied in implementation projects that studied various I/O-

efficient algorithms from the practical point of view. The fast algorithmic components of 

STXXL library gave the implementations an opportunity to solve problems of very large size 

on a low-cost hardware in a record time. For the tests many real-world and synthetic inputs 

have been used. It has been shown that external memory computation for these problems is 

practically feasible now. We overview some computational results of these projects. 

The performance of external memory suffix array construction algorithms was investigated in 

. The experimentation with pipelined STXXL implementations of the algorithms has shown 

that computing suffix arrays in external memory is feasible even on a low-cost machine. Suffix 

arrays for long strings up to 4 billion characters could be computed in hours. 

The project [34] has compared experimentally two external memory breadth-first search (BFS) 

algorithms. The pipelining technique of STXXL has helped to save a factor of 2–3 in I/O 

volume of the BFS implementations. Using STXXL, it became possible to compute BFS 

decomposition of node-set of large grid graphs with 128 million edges in less than a day, and 

for random sparse graph class within an hour. Recently, the results have been significantly 

improved. 

2.11 CONCLUSION 

We have described STXXL: a library for external memory computation that aims for high 

performance and ease-of-use. The library supports parallel disks and explicitly overlaps I/O and 

computation. The library is easy to use for people who know the C++ Standard Template 

Library. The library implementations outperform or can at least compete with the best available 

practical implementations on real and random inputs. STXXL supports algorithm pipelining, 

which saves many I/Os for many external memory algorithms. 
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3.1 Implementation detail 

In our project we use different implementation to reach our objective in this work, this what we 

going to introduce in this chapter by presenting the different steps of a complete system of 

distributed memory-bound word counting for large data and the working Environment by 

showing our experimental result to show the efficacy of our software which was implemented 

with the programming language C++, because it made it is easy for external memory 

implementation. 

This chapter will give u the reality of our word counting system and evaluate it performance, 

which was implemented according to a external memory method and the use of STXXL of the 

external memory computing 

3.2 External Data structures 

The main motivation behind using external data structure is to allow our software to handle 

very large input data. We perform the counting over this large input data through the following 

steps: Vocabulary indexing, Vector populating, Vector sorting and counting. 

3.2.1  Vocabulary indexing: 

STXXL, like other external memory implementations, only supports the so-called Plain Old 

Data (POD) structures. These are fixed size simple types such as numbers and characters as 

well as fixed-size structures. This constraint is traded for more efficient IO performance. 

Unfortunately, our main data representations, strings, do not fit into the POD category, as they 

tend to be of variable lengths. Therefore, finding a mechanism to encode our data into fixed 

sized structures is mandatory. At the time of designing our software, we thought of two 

solutions: 

1. Use fixed size character strings: Here we need to assume a maximum length of the input 

words. In other words, we accept words up to a certain length and truncate the very long 

ones or simply ignore them. While this assumption is reasonable for most NLP corpora, 

we found that it could slightly limit the flexibility of our final product. More 

importantly, it could lead to wasting non negligible memory amounts, when most n-

grams are shorter than the assumed maximum. 

2. Index our vocabulary and use the index instead of the words. With this, we have more 

advantages compared to using fixed size strings. Moreover, Integers are fast to create 
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and can be placed right in the stack, whereas strings must be in the heap. An additional 

advantage would be a reduced memory usage, as we expect the average word length to 

be greater than the size of the integer used as index.  

So we chose the second solution over the first one.  

Our way to implement the word indexing is to use a map which is an associative data structure 

and its mainly used for fast lookups or searching data. It stores data in the form of key and value 

pairs where every key is unique.  

Nevertheless, using the map types offered by the C++ STL library might sound controversial 

to our original aims, as these reside fully in memory. Again, to support extremely large 

vocabularies we went for the map type offered by the Berkeley DB API. It is implemented using 

B-Trees. 

We did this using Oracle Berkeley DB, because it stores data quickly and easily without the 

overhead found in other databases, and it supports large data volumes. Berkeley DB is a C 

library that runs in the same process as our application, avoiding the interposes communication 

delays of using a remote database server. Shared caches keep the most active data in memory, 

avoiding costly disk accesses. 

Every processing unit should have the same and exact copy of this map. This is achieved by 

forcing the indexing operation in each node regardless whether this unit will treat the underlying 

sentence or not (the load is distributed over the computing units on a sentence basis, as will be 

explained in the next section) see the next figure.  

 

 

 

 

 

Figure 3.1: indexing process 
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3.2.2 Vector populating 

After having the index we searched for solution that give to know the word a index , because 

knowing that with the map will take lot of time . 

To solve this problem with a vector , that we have fill it with word in order of their index it will 

give us the possibility to know the word from the index directly ,see figure 3.2 .for that we use 

DB Vectors it a ‘Hash’ this is built into Berkeley-DB . vector are better and convenient way of 

storing the data of same data type with same size , allows us to store known number of elements 

in it this 2 fact are helpful for our large data. 

 

 

 

 

 

 

 

Figure 3.2: Berkeley DB structures used in the application and their interaction 

After having the index of words we store n-gram of “index-word” in an STXXL vector.  Unlike 

the vocabulary index (described in the previous step), these STXXL vectors are distributed over 

the computing units; and not necessarily contain identical data it shown in the next figure.  

 

 

 

 

            

Figure 3.3: Presentation of the N-grams STXXL VECTOR 
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Figure 3.4: this figure show how every process fill the n-gram vectors 

3.2.3 Vector sorting 

Before proceeding into counting the n-grams, we need to put identical ones next to each other 

in the containing vector. This is obtained by sorting the STXXL vector. This operation involves 

distributed external sorting as the underlying container is itself distributed over multiple units. 

This is the most what our work is based, the objective is to get external sorting with see 

figure3.5. 

The most universal STXXL container is stxxl::vector. Vector is an array whose size can vary 

dynamically. The implementation of stxxl::vector is similar to the LEDA-SM array [35]. The 

content of a vector is striped block-wise over the disks, using an assignment strategy given as 

a template parameter. Some of the blocks are cached in a vector cache of fixed size (also a 

parameter). The replacement of cache blocks is controlled by a specified page-replacement 

strategy. STXXL has implementations of LRU and random replacement strategies. The user 

can provide his/her own strategy as well. The stxxl::vector has STL-compatible Random 

Access Iterators. 

 

 

 

 

...............................

...............................

...............................

...............................

...............................

............................... 

1 

2 

3 

4 

5 

6 

Every process will 
take the line of next as 

number of process  
(I – P ) % NumP 

Corpus

Line number



CHAPTER 3                                                                                          IMPLEMENTATION 

34 
 

The motivation of using of the STXXL library was: 

Low CPU overhead (use low-level optimizations like copying operands in CPU registers, unroll 

loops, etc.) , use of direct I/O to avoid unneeded data copying (i.e. use syscall file with O 

DIRECT flags),use of own prefetching/buffering mechanisms for overlapping I/O and 

computation  (buf ostream and buf istream classes from the BM layer) and support of parallel 

disks. 

 

 

 

 

 

 

Figure 3.5 : Distributed sort STXXL Sort 

 

3.2.4 Counting 

Once the vectors are globally sorted, the counting becomes a trivial task. We scan through the 

vector and gather each identical consecutive entries into a single counted entry. Nevertheless, 

as the vectors are sorted globally and redistributed over the computing units, a problem may 

arise as the counting is carried on locally. The tail of the vector at given unit may correspond 

to the head of the vector at the next unit. We solve this issue by always passing the first entry 

in the vector, at any unit to the previous unit, except the first unit as it showed in Figure 3.5. 

At the end of all this here we go to last step of our software is to count n-grams in our text . 

In this and after we did a external sorting we begin to browse the vector till we have new element 

and we start to browse the next new element with calculated how much the element was 

repeated. 

Which means that the sorting was just to make the vector easy to be read and count the n-grams 

in the text  
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Figure 3.6: Solution to the problem which arises after distributed sorting: The same n-gram may 

exist on two different units 

3.3 Parallel Computing  

To make our work so fast we used more than 2 computer and for that we needed Parallel 

Computing implementation ‘OPEN MPI’ The Open MPI Project is an open source Message 

Passing Interface implementation that is developed and maintained by a consortium of 

academic, research, and industry partners. 

The motivation that push us to use Advantage of MPI are: One of the oldest libraries, Wide-

spread adoption. Portable and Minimal requirements on the underlying. 

And in the Hardware side: Explicit parallelization, intellectually demanding, achieves high 

performance and Scales to large number of processors. 

3.4 Shared memory parallelism 

To have the ability for the processors to access all memory as global address space to share this 

memory, and provide more speed to our system we needed to use ‘OPENMP’, OpenMP is an 

API built for shared-memory parallelism. This is usually realized by multi-threading. The 

OpenMP API is comprised of three distinct components: compiler directives, runtime library 

routines, and environment variables. 

Compiler directives: typed in your source code, these are instructions for the compiler regarding 

how to parallelize your code. If you set the right flags at compilation, these directives are read 

and understood, else, they are ignored, runtime library routines: typed in your source code, 

these are function calls to functions of the OpenMP library (omp.h in C/C++) ,environment 
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variable: typed in the terminal, this is a variable used by the system that can be modified or 

retrieved. 

The motivation that push us to use OpenMp was : Easy to start, Data layout and decomposition 

are handled automatically by directives , Can incrementally parallelize a serial program – one 

loop at a time, Can verify correctness and speedup at each step, Provide capacity for both 

coarse-grain and fine-grain parallelism, and Significant parallelism could be achieved with a 

few directives 

All those lead us to create a parallel computing network that will be configured and 

implemented as it showed in the next figure. 

Figure 3.7: Typical hardware setup of our system 

 

 

 

 

 

 

 

 

Local storage

Global storage 

t0       t1         t2 

d0       d1         d2 



CHAPTER 3                                                                                          IMPLEMENTATION 

37 
 

3.5 Architecture of the Proposed System: 

 

 

 

 

 

 

 

Figure 3.8 General scheme of our Counting system. 

3.6 Working Environment: 

3.6.1 Hardware Environment  

In our experiments, we use tow laptop connected by a 10/100Mbs switch. And a couple of 

external disks .The characteristics of the PCs are shown in Table3.1 whereas the attributes of 

disks are in Table 3.2. The rates in the last table were computed using the Linux Gnome 

“Disks” utility.1 The table gives the size of each disk, the corresponding average IO rates.  

Table 3.1: hardware properties 

 

                                                 
1 https://github.com/GNOME/gnome-disk-utility 

 Unit 0 Unit 1 

Exploitation system Linux mint18 cinnamon 64-bit Linux mint18 cinnamon 64-bit 

processor Intel Celeron(R) CPU N3060 

@ 1.60GHz 

Intel(R) Core(TM) i5-3210M 

@ 2.50GHz 

RAM 4 GB 6 GB 

Hard disk 500GB 1000GB 

Hard disk Rotation speed 5,400 rpm 5,400 rpm 
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Disk Disk Type 
Disk Size 

‘GB’  

Average Read 

Rate ‘Mb/S’  

Average Write 

Rate ‘Mb/S’  

SD1 Internal hard Disk 500 95.8 - 

SD2 Internal hard Disk 1000 91.1 - 

SD3 External hard Disk 1000 27.3 22.0 

SD4 USB Flash Disk 8 20.7 3.0 

SD5 USB Flash Disk 8 24.5 6.1 

SD6 USB Flash Disk 4 16.9 10.9 

SD7 USB Flash Disk 4 18.8 3.2 

SD8 USB Flash Disk 2 15.3 2.9 

SD9 USB Flash Disk 8 8.3 2.2 

SD10 USB Flash Disk 16 26.1 2.9 

Table 3.2: Disk properties 

 

 

Figure 3.9: work environment 
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3.6.2 Corpora: 

The work of our application is based in large corpora in this fact we chose to use Tatoeba 

corpora, the Content of Tatoeba in November 2017, the Tatoeba Corpus has over 6,000,000 

sentences in 319 languages. The top 21 languages make up 90% of the corpus, [38]. Eighty-

five of these languages have over 1,000 sentences. The top 13 languages have over 100,000 

sentences each. The interface is available in 25 different languages. Parallel text corpora such 

as Tatoeba are used for a variety of natural language processing tasks which made us to choose 

this one. The Tatoeba data has been used as data for tree banking Japanese [36] and statistical 

machine translation [37]. 

In our experiments, we use a random sample of this corpus consisting of 414.5 thousand lines 

and 3.6 million words. 

3.7 Results 

Our software supports parallelism in many ways: on the CPU level, on the machine level, and 

on the disk level. We created different configurations to examine the efficiency of these 

parallelism levels. Table 3.3 records the results of all the experiments. The first column 

(Experiments) is an ID for the experiment. The second column shows the number of parallel 

threads per node (between brackets). The column “Hard Disks” shows the used disk IDs per 

node. Characteristics of these disks can b e retrieved from Table 3.2. In columns 4 through 6 

the times of specific operations are given in seconds. The “Loading Time” (column 4) is the 

time spent by the system reading the corpus line by line, extracting n-grams from each line, 

indexing the underlying words (as described in Section 3.2.1), and pushing the indexed n-grams 

into the STXXL vector (as described in Section 3.2.2). 

The “Sorting time” represents the time spent by all computing units in the distributed sorting. 
The “Total time” is the time of the whole process. 
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Experiments 
Processor  

(Number of  

thread) 

Hard Disks Loading time ‘s’   Sorting time ‘s’  Total time ‘s’  

EXP1 
Unit 0 (2) SD1 6193.24 5.053 6229.96 

Unit 1 (2) SD2 2455.46 5.618 6256.64 

EXP2 
Unit 0 (2) SD1,SD3 6371.62 11.703 6441.32 

Unit 1 (2) SD2,SD4 3033.99 53.065 6458.8 

EXP3 
Unit 0 (2) SD1,SD3,SD6 6432.44 13.4365 6586.07 

Unit 1 (2) SD2,SD4,SD7 2706.3 18.2532 6486.76 

EXP4 
Unit 0 (2) SD5 7226.67 37.80 7326.37 

Unit 1 (2) SD4 2596.01 26.63 7292.76 

EXP5 
Unit 0 (2) SD5,SD6 6769.77 15.25 6847.29 

Unit 1 (2) SD4,SD10 2609.77 13.80 6819.95 

EXP6 
Unit 0 (2) SD5,SD6,SD9 6664.01 17.16 6715 

Unit 1 (2) SD4,SD10,SD7 2510.87 15.23 6749 

EXP 7 Unit 0 (2) SD1 5882.96 5.92 6001 

EXP8 Unit 0 (1) SD1 5985.91 8.44 6107.06 

Table 3.3: Table of our experimental result 

We started with a preliminary experiment (EXP1) using the internal disks only of each machine. 

At first we thought that adding more disks will always result in a reduced total time. This was 

proved incorrect in the second experiment (EXP2). In EXP2, the process was much slower, 

even though we have more disks available to us. However, looking more closely to the disk 

configurations, we find out that this slowdown is mainly due to the fact that the added disks are 

much slower than the internal ones. This result is even confirmed further in the next row 

(EXP3): more slow disks result in even slower running time. The series of experiments (EXP 4 

through EXP 6) demonstrate the effect of multiple parallel disks. With some minor exceptions, 

the execution time always diminish as the number of parallel external, disks. This behaviour is 

to be expected as STXXL assumes that the data is stripped over the different parallel disks. The 

following lines of experiments (EXP7 and EXP8) show the effect of shared memory 

parallelism. We kept the same disk configuration and changed the number of threads.  This 
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experiment shows that the shared memory parallelism indeed helps, but with a much lower 

factor than the disk parallelism. The speedup in the first case is around 2 to 6% and in the second 

case it is only 1.7%. However, we have to mention that unfortunately the very heterogeneous 

setup we are using will have a negative impact on the results we draw. 

3.8 Conclusions 

In this chapter, we presented the details of the software developed in response to our original 

objective: perform counting on large corpora with limited hardware resources. By "large 

corpora" we mean both the total amount and the vocabulary size. The procedure is carried out 

as follows: all the data is indexed and then loaded into an STXXL vector. After that, this 

STXXL vector is sorted and the counts are generated.  

Along this process, we support parallelism on multiple dimensions. First, the STXXL vectors 

are distributed over many computing units. Each of these computing units can perform its job 

using multiple parallel threads. Moreover, the STXXL IO latency can be improved by using 

multiple parallel disks on each of the computing units. 

The features of our software were demonstrated through a series of experiments on real world 

corpora. The efficiency was quantified by reporting the amount of time the operation takes to 

complete in different hardware configurations. The experimentations show that although the 

shared memory parallelism has a positive impact of the performance, the gains obtained from 

parallelizing the IO are far more powerful.  
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4.1 Conclusions and Future Work 

Statistical natural language processing (NLP) is mainly based on models built from language 

data. These models will play a key role in the success of the corresponding NLP application. 

Exploiting the large amounts of language data available over the Internet, nowadays, is, on  the 

one hand, necessary to produce robust and more accurate models. On the other hand, its 

availability in large amounts can present a real challenge to a resource constrained environment, 

as it might no longer fit into main memory during the training process.  

Generally speaking, statistical modeling starts from the fundamental operation of counting the 

occurrences or cooccurrences of language units,such as n-grams or bilingual word pairs. The 

common technique of using dictionary (or map) data structures to perform this simple operation 

becomes impractical in large quantity scenarios. This last situation is overcome using external 

memory coupled with efficient sorting over the data items. However, the software products 

available on the market today and which use this approach to handle large data sizes do not 

exploit the parallel capabilities of the modern machines. We tried to answer this requirement 

through out the work presented in this thesis. 

We have implemented a software package which performs n-gram counting over arbitrarily 

large corpora. The key new features in our solution is the fact that it, in addition to using external 

memories, exploits parallelism at the IO level as well as at the CPU level. The IO level 

parallelism is supported by building on top of STXXL data structures. STXXL library, unlike 

other common external memory solutions, implements a parallel disk model allowing parallel 

IO reads and writes. The parallelism is pushed even further by distributing the processing, 

which includes sorting and counting, over multiple machines. For that, we used an additional 

library, DEM_sort, written specifically for the STXXL vector data types. In addition to these 

libraries, we also used OpenMP and OpenMPI libraries. Open MPI handles the distributed 

parallelism and OpenMPsupports the shared memory parallelism. 

Our experiments show that we almost always gain by using more disks, more threads, or more 

machines. However, it is difficult to conclude about a precise correlation between these 

parameters and the gained speedup. This difficulty is mainly due to the aggressive heterogeńeity 
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in the components used in our experimentation environment. The experiments were run on our 

personal laptops and a couple of usb flash disks. nor our laptops nor the usb disks have the same 

underlying properties. For instance, one of the laptops has more processing power and always 

completes much faster than the other. In such a heterogenous scenario, it would be useful to 

implement a load balancing algorithm, but this was out of our scope in this project. Another 

inconsistency can be seen by looking at the disks used in a given experiment. The introduction 

of a single slow disk will slow down the whole experiment. 

As consequence, the first thing we are looking forward to is to perfectly homogenize our 

platform. We need to use a couple of identical machines together with similar external disks. 

We think this will give us more realistic and accurate conclusions about the system speed up. 

Another limitation we plan to overcome is the fixed n-gram order built into the source code and 

can be only changed by editing and recompiling the code. The experiments were carried out to 

compute 3-gram counts. For a 3-gram language model to be computed, we also need unigram 

and bigram counts. Once we solve this issue, we would continue by computing probabilities 

and outputting a complete language model. 
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