
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
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Faculté des Sciences et de la Technologie
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MASTER

En Mathématiques

Spécialité:

Analyse Fonctionnelle et Applications

Présenté par
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M. OUAHAB Abdelghani Prof Université d’Adrar Président
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NotationsSymbol Description

The most frequently used notations, symbols, and abbreviations are listed below

d(x, y) The distance betweenx and y.

(X, d) The metric space X.

(X,‖.‖) The linear normed space X.

BX The family of all bounded sets in X.

NX The family of all relatively compact sets in X.

M Closure of M with respect to the norm topology .

co(M) The convex hull ofM.

co(M) The closed convex hull ofM.

diam(M) The diameter of the set A, where A is a subset of a metric space X.

BX The unit ball of X.

B(x, r) The ball centred by x with radius r, Br if x = 0.

MNC Measure of noncompactness.

α The Kuratowski MNC.

χ The Hausdorff MNC.

X∗ Dual topology of X.

X∗∗ Bidual topology of X.

〈·,·〉X∗,X The bilinear mapping from X∗ ×X into R (Duality bracket).

σ(X,X∗) The weak topology.

σ(X∗, X) The weak star topology.

xn → x xn converges strongly to x.

xn ⇀ x xn converges weakly to x.

M
w Closures of M with respect to the weak topology .

MWNC Measure of weak noncompactness.

WX The family of relatively weakly compact sets in X.

ω The De Blasi MWNC.

D(T ) The domaine definition of the operator T.

BOM Block Operator Matrix.

meas(. ) The Lebesgue measure.

L1 The vector space of classes of functions whose absolutely integrable

in the sense of Lebesgue.

C(J,X) The set of continuous functions from J intoX.
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Introduction

Fixed point theory is a powerful and fruitful tool in modern mathematics and may be
considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory
has been an active area of research with a wide range of applications in several fields.
In fact, this theory constitutes an harmonious mixture of analysis (pure and applied),
topology, and geometry. In particular, it has several important applications in various
fields, such as physics, engineering, game theory, and biology (see [3]-[7]).

It has been observed that many, if not a majority, of equations can be modified to fit
the following general scheme. We are given a setM and a transformation T which assigns
to each x ∈ M a point y = Tx ∈ M: The solutions we seek are represented by points
invariant under T : These are the points satisfying

x = Tx. (1)

A fixed point theorem is a result saying that a mapping T will have at least one fixed
point under some conditions. Depending on the nature of this conditions, we can divide
fixed point theory into two main branches[28] :

• In the first one, we may consider results which may be deduced from metric assump-
tions.

• In the second one, results are obtained using topological and geometrical properties
of the setM.
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Introduction

Perhaps, the most well-known result in the first kind is Banach’s contraction principle.
More precisely, in 1922, S. Banach formulated and proved a theorem which focused, under
appropriate conditions, on the existence and uniqueness of a fixed point in a complete
metric space [29]. Concerning the second branch, the main two results are Brower’s fixed
point theorem in 1910 and its infinite dimensional version, Schauder’s fixed point theorem
in 1930 [29]. In both theorems, notice that compactness plays an essential role.

Since in some Banach spaces we do not know the complete description of the family
of all relatively compact sets in those spaces, in 1930 K. Kuratowski defined a function
α on the family of all bounded set of metric space into the real half-axis, this function
is the first Measure of Noncompactness. This latter became a very important branch of
nonlinear functional analysis, are widely applied in fixed point theory, as like Darbo’s
fixed point theorem in 1955 [8] and Sadoveskii’s fixed point theorem in 1967 [31] which
generalized Schauder’s fixed point theorem.

From a mathematical point of view, many problems arising from diverse areas of natural
sciences involve the existence of solutions of nonlinear equations having the following form

Tx+ Sx = x, x ∈M; (2)

where M is a nonempty, closed, and convex subset of a Banach space X, and where
T, S :M→ X are two nonlinear mappings. In 1958, M. A. Krasnoselskii [29] combined
between the two branches of the fixed point theory to solve equation (2); actually he
combined the Banach contraction principle and the Schauder fixed point theorem where

(i) S is compact and continuous;

(ii) T is a contraction; and

(iii) Tx+ Sy ∈M (∀x,y ∈M).

Then there exists x ∈M such that Sx+ Tx = x.

The loss of compactness of mappings in some problems oblige us to focus on fixed
point results under the weak topology. The Measure of Weak Noncompactness is a very
important tool used in this case. This measure was first introduced by F. S. De Blasi in
1977 [17], who proved the analogousness of Sadovskii’s fixed point theorem for the weak
topology.
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Introduction

This memoir is intended to study some generalisation versions of fixed point theorem of
Schauder and Krasnoselskii on Banach spaces and product of two Banach spaces furnished
with its norm and weak topology using the most useful technique of Measure of (Weak)
Noncompactness to find a solution for some nonlinear integral equations.

The content of the memoir is organized in four chapters. Each chapter contains a
number of section of theorems and applications. Chapter 1 is devoted to discuss Measures
of (Weak) Noncompactness in the Banach space and give the main and most frequently
used measures of (weak) noncompactness. In addition, we investigate some definitions
and fundamental theorem in weak topology and basic fixed point theorem in metric space.

In Chapter 2, we present some generalisation of Schauder fixed point theorem that
is Darbo’s and Sadoveskii’s fixed point theorems using the measure of noncompactness.
Moreover, we study the sufficient conditions which ensure the invertibility of (I − T ) to
find some user-friendly versions of fixed point theorems for the equation (2), in the setting
that the involved operators are not necessarily compact and continuous. Next, with this
fixed point results, we try to prove the existence and uniqueness in special case of solutions
for some kind of Volterra-Hammerstein’s integral equation

x(t) = g(t, x(t)) + λ
∫ t

a
κ(t, s)f(s, x(s))ds, (3)

posed in Banach space X = C([a, b],R) with the usual supremum norm ‖x‖∞ = max
t∈[a,b]

|x(t)|,
by imposing some conditions on f, g and κ.

In Chapter 3, we show some generalized fixed point results of the Schauder-Tychonoff
and Krasnoselskii type in the context that the involved operators are not weakly compact,
invoking the technique of measures of weak noncompactness in Banach spaces. Finally, an
application in Hammerstein’s integral equation

x(t) = g(t, x(t)) + λ
∫ 1

0
κ(t, s)f(s, x(s))ds, (4)

in L1(0,1), the space of Lebesgue integrable functions on (0,1) with values in R. Here f, g
and κ verify some conditions.

In the last Chapter , we study a coupled system of nonlinear functional integral
equations in suitable Banach spaces. This system is reduced to a fixed point problem for
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Introduction

a 2× 2 block operator matrix with nonlinear inputs.

L =

Ö
A B

C D

è
. (5)

We starting by given some assumptions on its entries under a strong topology and then a
weak topology setting. Habitually, the last section is an application, we prove the existence
of a solution of the following system of nonlinear integral:

x(t) = f(t, x(t))︸ ︷︷ ︸
Ax(t)

+
ñÇ∫ σ1(t)

0
κ(t, s)f1(s, y(η(s)))ds

å
· u
ô

︸ ︷︷ ︸
By(t)

,

y(t) =
ñÇ
q(t) +

∫ σ2(t)

0
p(t, s, x(s), x(λs))ds

å
· v
ô

︸ ︷︷ ︸
Cx(t)

+ g(t, y(t))︸ ︷︷ ︸
Dy(t)

.

(6)

where u ∈ X\{0} and v ∈ X\{0}. We will seek the solutions of this system in the space
C(J,X) endowed with the norm ‖ · ‖∞, X is a Banach space and f, σ1, k, f1, η, q, σ2, p, g

are given and verified some conditions.
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Chapter 1
Basic Concepts

The study of fixed point need a lot of prerequisites from the general theories of topological
notions and nonlinear operators. In this chapter we discuss some concepts needed for the
results presented in this memoir.

1.1 Measure of Noncompactness

1.1.1 The General Notion of Measure of Noncompactness

The notion of measure of noncompactness was originally introduced in metric spaces.
In this memoir we are going to use an useful axiomatic definition for Banach spaces, which
was introduced in 1980 by Banaś and Goebel [9].

Definition 1.1. [9] Let X be a Banach space and BX the family of all bounded subsets
of X. A map

µ : BX −→ [0; +∞),

is called a measure of noncompactness (for short MNC) defined on X if it satisfies the
following properties:

i) The family kerµ(B) = {B ∈ BX : µ(B) = 0} is nonempty and kerµ ⊂ NX .

ii) Monotonicity: A ⊂ B ⇒ µ(A) ≤ µ(B), for all A, B ∈ BX .

8



1. BASIC CONCEPTS

iii) Invariant under closure and convex hull: µ(B) = µ(B) = µ(co(B)), for all B ∈ BX .

iv) Convexity: µ(λA+ (1−λ)B) 6 λµ(A) + (1−λ)µ(B), for all λ ∈ [0, 1], and A, B ∈
BX .

v) Generalized Cantor intersection property: if {Bn}n∈N is a decreasing sequence of
nonempty, closed and bounded subsets ofX with lim

n→∞
µ(Bn) = 0, then the intersection

B∞ of all Bn is nonempty and compact.

Proposition 1.1. [31] Let X be a Banach space and let B ⊂ BX ,the map:

diam(B) =

 0, if B is empty
sup{‖x− y‖ : x,y ∈ B}, else

is MNC.

Proof. In fact:

i) The family ker diam(B) is nonempty because for all B consists exactly one point
diam(B) = 0.

ii) Let A, B two bounded subsets such that A ⊂ B so,
sup{‖x− y‖ : x,y ∈ A} ≤ sup{‖x− y‖x,y ∈ B} which means diam(A) ≤ diam(B).

iii) a. We have B ⊂ B so, by monotonicity we get diam(B) ≤ diam(B).
On the other hand, let ε > 0 and x, y ∈ B so, there exist x, y ∈ B such that
x ∈ B(x, ε2), y ∈ B(y, ε2); which means ‖x − x‖ < ε

2 and ‖y − y‖ < ε

2. The
use of triangular inequality give us:

‖x− y‖ = ‖x− y + x− x+ y − y‖

≤ ‖x− x‖+ ‖x− y‖+ ‖y − y‖

<
ε

2 + ε

2 + ‖x− y‖

< ε+ ‖x− y‖, ∀ε > 0,

so,
diam(B) ≤ diam(B) + ε, ∀ε > 0.

Now, let ε tends to 0 we get diam(B) ≤ diam(B); we infer the equality.

9



1. BASIC CONCEPTS

b. Let x, y ∈ co(B). Then x =
n∑
i=1

tixi and y =
m∑
j=1

sjyj with xi, yj ∈ B,
n∑
i=1

ti = 1

and
m∑
j=1

sj = 1. Thus:

‖x− y‖ =
∥∥∥∥∥∥
n∑
i=1

tixi −
m∑
j=1

sjyj

∥∥∥∥∥∥
=
∥∥∥∥∥∥
n∑
i=1

m∑
j=1

tisjxi −
m∑
j=1

n∑
i=1

sjtiyj

∥∥∥∥∥∥
≤

m∑
j=1

n∑
i=1

sjti‖xi − yj‖

≤
m∑
j=1

n∑
i=1

sjti︸ ︷︷ ︸
=1

diam(B)

= diam(B).

and it follows that diam(co(B)) ≤ diam(B). Since the opposite inequality is
obvious, we infer that the diameter is invariant under convex hull.

iv) It’s clear that diam(A+B) ≤ diam(A) + diam(B) ∀A, B ∈ BX . Moreover we have:

diam(λB) = sup{‖λx− λy‖ : x, y ∈ B}

= |λ| sup{‖x− y‖ : x, y ∈ B}

= |λ| diam(B) ∀B ∈ BX , ∀λ ∈ R.

So, for all λ ∈ [0,1] :

diam(λA+ (1− λ)B) ≤ diam(λA) + diam((1− λ)B)

= λ diam(A) + (1− λ) diam(B).

v) Cantor’s intersection theorem: If {Bn}n∈N is a decreasing sequence of nonempty,
closed and bounded subsets of X and lim

n→∞
diam(Bn) = 0 so, it is either empty or

consists of a single point. So it is sufficient to show that it is not empty. Pick an
element xn of Bn for each n. Since the diameter of Bn tends to zero and the Bn

are decreasing, the {xn}n∈N form a Cauchy sequence. Since the Banach space is
complete this Cauchy sequence converges to some point x. But each Bn is closed,

10



1. BASIC CONCEPTS

and x is a limit of a sequence in Bn, x must lie in Bn. This is true for every n, and
therefore the intersection of the Bn must contain x, then the intersection B∞ of all
Bn is nonempty and consists of exactly one point. �

Definition 1.2. [11] Let µ be a measure of noncompactness in the Banach space X. We
will call the measure µ semi-homogeneous if:

vi) µ(λB) = |λ|µ(B) for λ ∈ R.

If it satisfies the condition:

vii) µ(A+B) ≤ µ(A) + µ(B)

it is called sub-additive. The measure µ being both semi-homogeneous and sub-additive is
said to be sub-linear.

Definition 1.3. [11] We say that a measure of noncompactness µ has the maximum
property (or it is semi-additive) if:

viii) µ(A ∪B) = max{µ(A),µ(B)}.

The most important class of measures of noncompactness is described in the below given
definition.

Definition 1.4. [11] A sub-linear measure of noncompactness µ which has the maximum
property and is such that kerµ = NX (fullness) is called regular measure of noncompactness.

Remark 1.1. Diameter is MNC non regular because it hasn’t the maximum property
and isn’t full (i.e., ker diam ( NX).

1.1.2 The Kuratowski and Hausdorff Measures of Noncompact-

ness and its Properties.

The most important examples of measures of noncompactness are

11



1. BASIC CONCEPTS

Definition 1.5. [11] Let (X,d) be a complete metric space. We define the function α of
Kuratowski of the set B ∈ BX the infimum of the numbers ε > 0 such that B admits a
finite covering by sets of diameter smaller than ε, i.e.,

α(B) = inf
{
ε > 0 : B ⊂

n⋃
i=1

Si : Si ⊂ X, diam(Si) < ε, i = 1, 2, . . . , n, n ∈ N
}
.

Definition 1.6. [11] Let (X, d) be a complete metric space. We define the function χ
of Hausdorff of the set B ∈ BX the infimum of the numbers ε > 0 such that B can be
covered by finitely many balls of radius smaller than ε, i.e.,

χ(B) = inf
{
ε > 0 : B ⊂

n⋃
i=1

B(xi, ri), xi ∈ X, ri < ε, i = 1, . . . , n, n ∈ N
}
.

if X is a Banach space the definition of χ is equivalent to the following:

χ(B) = inf {ε > 0 : B has a finite ε-net} ,

= inf {ε > 0 : B ⊂ S + εBX , S ⊂ X, S is finite } .

Proposition 1.2. [11] The function α of Kuratowski is a non-singular regular measure
of noncompactness in Banach space.

Proof. a) Fullness: We want to prove that α(B) = 0⇐⇒ B is relatively compact:

B is relatively compact in a complet metric space⇐⇒ B it is totally bounded

⇐⇒ ∀ε > 0;∃ Si; i = 1...n such

that B ⊆
n⋃
i=1

Si and diam(Si) < ε

⇐⇒ α(B) = 0.

Which means that kerα = NX .

b) Monotonicity: Let A, B ∈ BX with A ⊂ B since any cover{Bi}ni=1 of B is a cover
of A so,

α(A) ≤ α(B).

c) Invariant under closure: By monotonicity of α we have clearly α(B) ≤ α(B).
Let ε > 0, Si be a bounded subset of X with diam(Si) < ε+α(B) for i = 1, 2, . . . , n,

and B ⊂
n⋃
i=1
Si. Then B ⊂

n⋃
i=1
Si. By proof of Proposition 1.1 "iii)-a." we get

diam(Si) = diam(Si) we conclude α(B) ≤ α(B). So α invariant under closure.

12



1. BASIC CONCEPTS

d) Maximum property : By monotonicity we have α(A) ≤ α(A ∪ B) and α(B) ≤
α(A ∪B) so,

max{α(A),α(B)} ≤ α(A ∪B).

In the other hand, let max{α(A), α(B)} = s and ε > 0. By definition of α we know
that A and B can be covered by a finite number of subsets of diameter smaller than
s+ ε. Obviously, the union of these covers is a finite cover of A ∪B. Hence we have
α(A ∪B) ≤ s+ ε, and now we obtain the semi-additivity of α.

e) Now we want to proof that α is sub-linear:

1. Semi-homogeneity:
Let Si be a bounded subset of X with diam(Si) < α(B) + ε for i = 1, 2, . . . , n

and B ⊂
n⋃
i=1
Si. Then for any λ, λB ⊂

n⋃
i=1
λSi and we have proved that

diam(λSi) = |λ| diam(Si). Hence it follows that α(λB) ≤ |λ|α(B). if λ = 0 the
claim is obvious, if not , analogously we have α(B) = α(λ−1(λB)) ≤ |λ−1|α(λB),
that is, |λ|α(B) ≤ α(λB). This proves the semi-homogeneity.

2. Algebraic sub-additivity:
Let Si be a bounded subset of X with diam(Si) < α(A) + ε for each

i = 1, 2, . . . , n and A ⊆
n⋃
i=1
Si. Furthermore, let Gi be a bounded subset of

X with diam(Gj) < α(B) + ε for each j = 1, . . . ,m and B ⊆
m⋃
j=1
Gj. Then

A+B ⊂
n⋃
i=1

m⋃
j=1

(Si +Gj) and

diam(Si +Gj) < α(A) + α(B) + 2ε, for all ε > 0.

Let ε tends to 0, and this shows the inequality.

f) Invariant under convex hull: Clearly α(B) ≤ α(co(B)), and it suffices to show
α(co(B)) ≤ α(B). Let {Si}ni=1 be a bounded subset of X with diam (Si) < d for

each i = 1, . . . , n and B =
n⋃
i=1
Si. We can assume that every Si is a convex set since

diam(co(Si)) = diam(Si). By definition of the convex hull we obtain:

co(B) =
{

n∑
i=1

λixi : λi ≥ 0,
n∑
i=1

λi = 1, xi ∈ Si, 1 ≤ i ≤ n

}
. (1.1)

13



1. BASIC CONCEPTS

Let ε > 0 and S =
{

(λ1, . . . , λn) :
n∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , n
}
. Then S is a

compact subset of (Rn, ‖ · ‖∞), where ‖(λ1, . . . , λn)‖∞ = max
1≤i≤n

|λi|.
We put

M = sup
{
‖x‖ : x ∈

n⋃
i=1
Si

}
.

And let
T = {(tj,1, . . . , tj,n) : j = 1, . . . ,m} ⊂ S

be a finite ε
(Mn) -net for S, with respect to the ‖.‖∞-norm.

Hence if
n∑
i=1

λixi is a convex combination of elements of B, where we suppose that

xi ∈ Si for i = 1, . . . , n, then there exists (tj,1, . . . , tj,n) ∈ T such that

‖(λ1, . . . , λn)− (tj,1, . . . , tj,n)‖∞ <
ε

Mn
, (1.2)

since
n∑
i=1

λixi =
n∑
i=1

tj,ixi +
n∑
i=1

(λi − tj,i)xi, (1.3)

it follows from (1.1), (1.2), and (1.3) that

co(B) ⊂
m⋃
j=1

{
n∑
i=1

tj,iSi

}
+ ε

Mn

n∑
i=1

Ai,

where Ai = {x ∈ X : ‖x‖ ≤M} for i = 1,2, . . . , n. Now we have since α is monotone,
sub-linear and has the maximum property:

α(co(B)) ≤ α

Ñ
m⋃
j=1

{
n∑
i=1

tj,iSi

}
+ ε

Mn

n∑
i=1

Ai

é
≤ α

Ñ
m⋃
j=1

{
n∑
i=1

tj,iSi

}é
+ α

(
ε

Mn

n∑
i=1

Ai

)

≤ max
1≤j≤m

α

(
n∑
i=1

tj,iSi

)
+ ε

Mn

n∑
i=1

α (Ai)

≤ max
1≤j≤m

n∑
i=1

tj,iα (Si) + ε

Mn
2nM

< d max
1≤j≤m

n∑
i=1

tj,i + 2ε < d+ 2ε.

So α is invariant under convex hull.
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g) Non-singularity:
Let B = {xi}ni=1 and we know that any singleton {xi} is a compact subset so,
α({xi}) = 0 ∀i = 1 . . . n, and using the semi-additivity we obtain

α(B) = α(
n⋃
i=1

xi) = max{α(xi) : i = 1,...,n} = max{0,0,...,0} = 0.

h) Verify the generalization Cantor’s intersection theorem: Let {Bn}n∈N is a
decreasing sequence of nonempty, closed and bounded subsets of X and lim

n→∞
α(Bn) =

0 and let {xi}∞i=1 be a sequence such that xn ∈ Bn ∀ n ∈ N and Cn = {xi}i≥n, so,
Cn is also a decreasing sequence verifies Cn ⊂ Bn ∀n ∈ N and we have :

α(C0) = α(x0 ∪ C1) = max{α(x0),α(C1)} = α(C1).

So; for all n ∈ N α(C0) = α(Cn) and by monotonicity we infer α(C0) = α(Cn) ≤
α(Bn) n−→∞−−−−→ 0 which imply that C0 is relatively compact set. Thus the sequence
(xn) has a convergent subsequence {xnk

} with x = lim xnk
∈ X. Since Bn is closed

in X, we get x ∈ Bn for all n > 0, that is, x ∈ B∞, so, B∞ is nonempty.
Moreover, as

α(B∞) 6 α(Bn) n−→∞−−−−→ 0

which means that B∞ is relatively compact,but {Bn}n≥0 is closed so B∞ =
∞⋂
n=0

Bn is

also closed, from all that we infer B∞ is compact. �

Theorem 1.1. [31] Let BX be the unit ball in X. Then α(BX) = χ(BX) = 0 if X is
finite-dimensional, and α(BX) = 2, χ(BX) = 1 in the opposite case.

The next theorem shows that the functions α and χ are in some sense equivalent.

Theorem 1.2. [31] Let X be a Banach space and B be a bounded subset of X. Then:

χ(B) ≤ α(B) ≤ 2χ(B).

In the class of all infinite-dimensional spaces these inequalities are sharp.

15



1. BASIC CONCEPTS

1.2 Basics of weak topology

There are two classes of topologies that by and large include everything of interest. The
first and most familiar is the class of topologies that are generated by a metric. The second
class is the class of weak topologies. To present some fixed point theory in a Banach spaces
we need to understand this latter ( which is different from the first topology and weaker
than it). The “weak topologies” arise naturally in this setting which is the subject of the
present section.

1.2.1 Weak and Weak∗ Topologies

Definition 1.7. Let X be a Banach space and X∗ its dual. The weak topology denoted
σ(X,X∗), is the most economical topology in X, in the sense that it has the fewest open
sets (ie., the coarsest topology) such that, each map f : X → R, f ∈ X∗, is continuous.

Proposition 1.3. [15] The weak topology σ(X, X∗) is Hausdorff.

Proposition 1.4. [15] Let (xn) be a sequence in X. Then,

i) [xn ⇀ x weakly in σ(X, X∗)] ⇔ [〈f, xn〉 → 〈f, x〉 ,∀f ∈ X∗],

ii) If xn → x strongly, then xn ⇀ x weakly in σ(X, X∗).

Remark 1.2. When X is finite-dimensional, the weak topology σ(X, X∗) and the usual
topology are the same.

Definition 1.8. Let X be a Banach space, we recall that

• A sequence {xn}n∈N is weakly Cauchy if for every x∗ ∈ X∗, the sequence {x∗(xn)}n∈N
is Cauchy in the scalar filed.

• X is sequentially weakly complete1 if any weakly Cauchy sequence in X is weakly
convergent.

1 Each reflexive Banach space is sequentially weakly complete, but there are nonreflexive spaces enjoying
this property. For instance, L1(Ω), with Ω measurable in Rn, although non-reflexive, is sequentially weakly
complete.

16



1. BASIC CONCEPTS

Definition 1.9. Let X, Y be tow Banach spaces and T : X → Y be a mapping. We say
that:

• T is said to be weakly continuous if it is continuous from X weak σ(X, X∗) into Y
weak σ(Y, Y ∗).

• T is said to be sequentially weakly continuous, if for every sequence xn ⊂ X and
x ∈ X such that xn ⇀ x we have that Txn ⇀ Tx.

• T is said to be sequentially weakly-strongly continuous on X, if for every sequence
{xn} with xn ⇀ x, we have Txn → Tx.

• T is said to have sequentially closed graph if its graph G(T ) is sequentially closed in
X × Y .

The dual space X∗ we may endow it with the weak topology, the weakest one such that
all linear forms in X∗∗ are continuous, on other words

Definition 1.10. The weak∗ topology of the dual space of a normed space X is the
coarsest topology for X∗ such that, for each x in X, the linear functional x∗ 7→ 〈x∗, x〉 on
X∗ is continuous.

Remark 1.3.

• All properties which are stated for weak topology of X can be adapted and hold for
the weak∗ topology of X∗.

• Neither the weak topology on X nor the weak∗ topology on X∗ is metrisable (except
for the case in which X is finite dimensional).

Definition 1.11. Let X be a Banach space and let J : X → X∗∗ be the canonical
injection from X into X∗∗ defined as follows: given x ∈ X the map f 7−→ 〈f, x〉 is a
continuous linear functional on X∗, thus it is an element of X∗∗, which we denote by Jx.
We have

〈Jx,f〉X∗∗,X∗ = 〈f,x〉X∗,X , ∀x ∈ X, ∀f ∈ X∗.

The space X is said to be reflexive if J is surjective, i.e., J(X) = X∗∗.

17



1. BASIC CONCEPTS

1.2.2 Closedness and Compactness in Weak Topology

Theorem 1.3. (Mazur’s Theorem, [15]) The weak closure of every convex subset in a
Banach space coincides with its strong closure.

Definition 1.12. The setM is weakly compact, if it is compact in the topology σ(X, X∗).

Theorem 1.4. (Kakutani’s Theorem, [15] ) A Banach space X is reflexive if and only if
its closed unit ball BX is weakly compact.

Corollary 1.1. [4] Every closed, bounded, convex subset of a reflexive Banach space X
is weakly compact.

Proof. Let X be a Banach space. According to Kakutani’s Theorem 1.4, the closed unit
ball of X is weakly compact. Hence so, is any closed ball. According to Mazur’s Theorem
1.3, every closed, convex subset of X is weakly closed. Therefore any closed, convex,
bounded subset of X is a weakly closed subset of a weakly compact set and hence must
be weakly compact. �

Now, we present the Eberlein–Šmulian’s criteria for weak compactness of subsets of a
Banach space.

Theorem 1.5. (Eberlein-Šmulian’s Theorem, [4] ) Let A a subset of Banach space X the
following assertions are equivalent

(i) The set A is relatively weakly compact, i.e., A’s closure is weakly compact,

(ii) The set A is relatively weakly sequentially compact, i.e., every sequence of members
of A contains a subsequence weakly converging in X.

Some consequence of the Eberlein Šmulian Theorem is the following result.

Theorem 1.6. (Krein-Šmulian’s Theorem,[19] p. 434) The closed, convex hull of weakly
compact subset of a Banach space is weakly compact.

The following three theorems are fundamental tool for the proofs of the existence of
solutions for several functional integral equations (see Chapter 4). The proof of those
theorems can be found in [18] , [32] and [32] again respectively.

18
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Theorem 1.7. (Dobrakov’s Theorem) Let K be a compact Hausdorff space and let X be
a Banach space. Let (fn)n be a bounded sequence in C(K,X), and f ∈ C(K,X). Then,
(fn)n is weakly convergent to f if, and only if, (fn(t))n is weakly convergent to f(t) for
each t ∈ K.

Theorem 1.8. (Arzéla-Ascoli Theorem S) Let X be a Banach space. A subset F in
C([a, b],X) is relatively compact if and only if.

(i) F is equicontinuous on [a, b], i.e., for every ε > 0 there is a δ > 0 such that
|f(x)− f(y)| < ε for all f ∈ F whenever |x− y| < δ, and x, y ∈ [a, b],

(ii) There exists a dense subset D in [a, b] such that, for each t ∈ D, F (t) = {f(t)|f ∈ F}
is relatively compact in X.

Theorem 1.9. (Arzéla-Ascoli Theorem W) Let X be a sequentially weakly complete
Banach space. A family F in the space C([a,b];X), endowed with the uniform weak
convergence topology, is sequentially relatively compact if and only if:

(i) F is weakly equicontinuous on [a, b], that’s ϕ(F ) is equicontinuous for all ϕ ∈ X∗.

(ii) there exists a dense subset D in [a, b] such that, for each t ∈ D, the section
F (t) = {f(t)| f ∈ F} is sequentially weakly relatively compact in X.

Lemma 1.1. ( [19], p. 414) Let A be weakly closed, K is weakly compact subsets of a
Banach space, then A+K is weakly closed.

1.3 Measure of Weak Noncompactness

1.3.1 The Axiomatic Measure of Weak Noncompactness

Following [12], we will adopt the following axiomatic approach of measure of weak
noncompactness in several Banach spaces.

Definition 1.13. Let X be a Banach space and BX the family of bounded subsets of X.
A map

ψ : BX −→ [0,+∞)
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is called a measure of weak noncompactness (for short MWNC) defined on X if it satisfies
the following conditions:

i) The family kerψ(B) = {B ∈ BX : ψ(B) = 0} is nonempty and kerψ ⊂ WX .

ii) Monotonicity: A ⊂ B ⇒ ψ(A) ≤ ψ(B), for all A, B ∈ BX .

iii) Invariant under weak closure and convex hull ψ(B) = ψ(Bw) = ψ(co(B)), for
allB ∈ BX .

iv) Convexity: ψ(λA+(1−λ)B) 6 λψ(A)+(1−λ)ψ(B), for allA, B ∈ BX and λ ∈ [0, 1].

v) Generalized Cantor intersection property: If (Bn)n≥1 is a sequence of nonempty,
weakly closed subsets of X with B1 bounded and B1 ⊇ B2 ⊇ . . . ⊇ Bn . . . and such
that lim

n→+∞
ψ (Bn) = 0, then the set B∞ :=

∞⋂
n=1

Mn is nonempty and weakly compact.

Remark 1.4. A measure of weak noncompactness is said to be regular if it has properties
(i)-(v), full and has the maximum property. (see Definition 1.4)

1.3.2 The De Blasi Measure of Weak Noncompactness

Recall that the notion of the measure of weak noncompactness introduced by De Blasi
[17]; this is the map defined as follows:

Definition 1.14. Let B be a non void bounded subset of Banach space X. The Blasi
measure ω(B) of noncompactness of B in the weak topology is defined by:

ω(B) = inf {t > 0 : there exists C ∈ WX such that B ⊂ C + tBX} .

Proposition 1.5. The Blasi measure is a regular measure of weak noncompactness.

Proof. i) Fullness: The proof of the part “only if” is given in [21], while the “if” part
is trivial.

ii) Monotonicity: let B1, B2 tow bounded sets such that B1 ⊂ B2. By definition of ω
there exists C ∈ WX and t > ω(B2) such that :

B1 ⊂ B2 ⊂ C + tBX
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so,
ω(B1) < t,

let t −→ ω(B2) we get
ω(B1) ≤ ω(B2).

iii) Homogeneity: let B be a bounded set. By definition of ω there exists C ∈ WX

and t > ω(B) such that:
B ⊂ C + tBX , (1.4)

homogeneity is obvious if λ = 0. So the multiplication (1.4) by λ ∈ R∗ we get:

λB ⊂ λC + λtBX

and since λC is also weakly compact so, ω(λB) < λt, and let t tends to ω(B) we
will get

ω(λB) ≤ λω(B). (1.5)

And we have
ω(B) = ω(λλ−1B) ≤ λ−1ω(λB); ∀λ ∈ R∗

which means
λω(B) ≤ ω(λB). (1.6)

By (1.5) and (1.6) ω is homogeneous.

iv) Sub-additivity: Let B1, B2 tow bounded sets such that. By monotonicity we have: B1 ⊂ B1 ∪B2

B2 ⊂ B1 ∪B2
⇒

 ω(B1) ≤ ω(B1 ∪B2)
ω(B2) ≤ ω(B1 ∪B2)

⇒ max{ω(B1),ω(B2)} ≤ ω(B1 ∪B2).

In the other hand, using the definition of ω; there exist C1, C2 ∈ WX , and t1 >

ω(B1), t2 > ω(B2) such that : B1 ⊂ C1 + t1BX

B2 ⊂ C2 + t2BX

⇒ B1 ∪B2 ⊂ (C1 + t1BX) ∪ (C2 + t2BX)

⇒ B1 ∪B2 ⊂ C1 ∪ C2 + max{t1,t2}BX ,
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and since C1, C2 are weakly compacts sets so, C1 ∪C2 is also weakly compact set so,

ω(B1 ∪B2) < max{t1,t2}BX

and let {t1, t2} tend to {ω(B1), ω(B2)} we will have

ω(B1 ∪B2) ≤ max{ω(B1),ω(B2)}BX .

And sub-additivity of ω is hold.

v) Invariance under passage to the weak closure[17]: From the definition of ω(B)
there exist C ∈ WX and t > 0 such that B ⊂ C+ tBX . Then B ⊂ co(C) + tBX and
co(C) is weakly compact, by the Krein-Šmulian Theorem 1.6. Then co(C) + tBX

being the sum of co(C), which is weakly compact, and tBX , which is weakly closed,
by Lemma 1.1 is weakly closed. Thus Bw ⊂ co(C) + tBX implies ω(Bw) < t.
Let t tends to ω(B) we will have:

ω(Bw) ≤ ω(B).

The reverse inequality is obvious.

vi) Invariance under passage to the convex hull[10]: Since B ⊂ co(B) then
ω(B) ≤ ω(co(B)).
Conversely, we show that ω(co(B)) ≤ ω(B). To see this, let t > ω(B). From the
definition of the De Blasi measure of weak noncompactness it follows that there
exists a weakly compact set C such that

B ⊂ C + tBX . (1.7)

We claim that co(B) ⊂ co(C) + tBX . Indeed, let x ∈ co(B). Then there exist

(x1, . . . , xn) ∈ Bn and (λ1, . . . , λn) ∈ Rn such that
n∑
i=1

λi = 1 and x =
n∑
i=1

λixi. From

(1.7) it follows that for each xi there is ci ∈ C such that ‖xi − ci‖ ≤ t. and we have
n∑
i=1

λici ∈ co(C) so:
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‖x−
n∑
i=1

λici‖ = ‖
n∑
i=1

λixi −
n∑
i=1

λici‖

≤
n∑
i=1

λi︸ ︷︷ ︸
=1

‖xi − ci‖

≤ t.

This implies that co(B) ⊂ co(C) + tBX ⊂ co(C) + tBX . By the Krein–Šmulian
Theorem 1.6 we know that co(C) is weakly compact and so ω(co(B)) ≤ t. Letting t
goes to ω(B) we get the desired result that is ω(co(B)) ≤ ω(B).

vii) Cantor’s intersection property[10]: Obviously this measure is non-singular(i.e.,
ω(B ∪ {x}) = ω(B),∀B ∈ BX ,∀x ∈ X). Now choose xn ∈ Bn;n = 1, 2, . . .. Then:

ω

( ∞⋃
n=1
{xn}

)
= ω

( ∞⋃
n=k
{xn}

)
≤ ω(Bk).

Since lim
n→∞

ω(Bn) = 0 we have ω(
∞⋃
n=1
{xn}) = 0, and therefore

( ∞⋃
n=1
{xn}

)
is relatively

weakly compact. By the Eberlein–Šmulian Theorem 1.5 {xn}n∈N is weakly sequen-
tially compact which means it contains a subsequence which converges weakly to
some point x ∈ X. Since all the sets are weakly closed then x ∈ Bn for n = 1, 2, . . . .
Thus, x ∈

∞⋂
n=1

Bn so, B∞ is nonempty Moreover, as

ω(B∞) 6 ω(Bn) n−→∞−−−−→ 0,

which means that B∞ is weakly compact and this completes the proof. �

Theorem 1.10. [17] Let X be a Banach space. Then:

a) If X is reflexive, ω(BX) = 0,

b) ω(BX) = 1, otherwise.

To proof this theorem we need to state the following known result due to Rådström.

Lemma 1.2. [27] Let M , N and L be given subsets of a Banach space X. Suppose that
N is convex and closed, L is bounded and M + L ⊂ N + L. Then M ⊂ N .
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Proof. (Theorem 1.10 )

a) By using Kakutani’s Theorem 1.4; it is known that X is reflexive if and only if BX

is weakly compact and hence the first statement is obvious.

b) Now, let X be non reflexive Since BX ⊂ {0} + 1BX then ω(BX) ≤ 1. Suppose
ω(BX) < 1. From the definition of ω there exist C ∈ WX and t, ω(BX) ≤ t < 1,
such that BX ⊂ C + tBX . Thus

BX ⊂ co(C) + tBX

and
(1− t)BX + tBX ⊂ co(C) + tBX

Since co(C) is strongly closed and convex, tBX is bounded, Lemma 1.2 implies
(1− t)BX ⊂ co(C) By the Krein–Šmulian theorem co(C) is weakly compact. But
(1− t)BX is closed, convex thus it is weakly closed in weakly compact so, it is too.
Since

x→ (1− t)−1x

is weakly continuous, then BX is weakly compact and therefore X is reflexive. This
is a contradiction. Accordingly, ω(BX) = 1 and the proof is complete. �

1.4 Definitions and fundamental theorems

Definition 1.15. Let T be a map from a set X into Y .

i) T is said to be one-to-one (injective) if T (x1) = T (x2) implies x1 = x2 for x1 , x2 ∈ X,

ii) T is said to be onto (surjective) if for each y ∈ Y there exists an x ∈ X such that
T (x) = y,

iii) T is said to be bijective if it is both one-to-one and onto.

Definition 1.16. Let (X, d) be a metric space and T : X → X a map. If there exists a
constant k > 0 such that

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X
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then we say that T is k-Lipschitz. In particular, we call T is contractive if k < 1.

In 1922 S.Banach stated one of the most important fixed point theorem in metric
spaces which is well known as Banach contraction principle (in short BCP) as follows:

Theorem 1.11. (Banach contraction principle [29]) Let (X, d) be a complete metric space
and T : X → X be a contraction. Then T has a unique fixed point x∗ ∈ X.

Lemma 1.3. [29] Let (X, ‖.‖) be a linear normed space, M ⊂ X. Assume that the
mapping T :M→ X is contractive with constant γ < 1; then the inverse of
F := I − T :M→ (I − T )(M) exists, and

∥∥∥F−1x− F−1y
∥∥∥ ≤ 1

1− γ ‖x− y‖, x, y ∈ F (M). (1.8)

An important generalization of contraction is the so-called nonlinear contraction
mapping.

Definition 1.17. LetM be a subset of X. The mapping T :M→ X is called a nonlinear
contraction, if there exists continuous and non-decreasing function φ : R+ → R+ satisfying
φ(r) < r for r > 0, such that

‖Tx− Ty‖ ≤ φ(‖x− y‖), ∀x, y ∈M. (1.9)

In [14], Boyd and Wong obtained a general result of BCP, we will recall it with its important
result in such a way:

Lemma 1.4. Let X be a Banach space, and T : X → X be a nonlinear contraction so, T
has a unique fixed point.

Lemma 1.5. If an operator T : X → X is φ-nonlinear contractive, then F := I − T is a
homeomorphism of X onto X.

In 1968, Bryant [16] extended BCP as follows:

Theorem 1.12. Let (X,d) be a complete metric space and let T : X → X be a mapping
such that for some positive integer n, T n is contraction on X. Then, T has a unique fixed
point.
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Proof. By BCP, T n has a unique fixed point, say x ∈ X with T n(x) = x. Since

T (x) = T (T n(x)) = T n(T (x)),

it follows that T (x) is a fixed point of T n, and thus, by the uniqueness of x, we have
T (x) = x, that is, T has a fixed point. Since, the fixed point of T is necessarily a fixed
point of T n so, is unique. �

Definition 1.18. Let (X, d) be a metric space andM be a subset of x and T :M→ X

a map. If there exists a constant h > 0 such that d(Tx, Ty) ≥ hd(x, y), ∀x, y ∈M then
we say that T is weakly expansive. In particular, we call T is expansive if h > 1.

Remark 1.5. We note that an (weakly) expansive map T : M → X may not be
continuous. If T :M⊂ X → X is a weakly expansive map, we will denote by

lip(T ) = max{h ≥ 0 : d(Tx, Ty) ≥ hd(x, y), x, y ∈M}.

As usual, Lip(T) denotes the Lipschitz constant for T if T is a Lipschitz map.

Lemma 1.6. [33] Let X be a complete metric space andM a closed subset of X. Assume
that the mapping T : M→ X is expansive and T (M) ⊃ M. Then T admits a unique
fixed point inM, that is, there is a unique x∗ ∈M such that Tx∗ = x∗.

Corollary 1.2. In Theorem 1.12, if we are replaced the contraction condition of T n by
T n is expansive and onto so, the result is hold.

Lemma 1.7. [33] Let (X, ‖.‖) be a linear normed space, M ⊂ X. Assume that the
mapping T :M→ X is expansive with constant h > 1.
Then the inverse of F := I − T :M→ (I − T )(M) exists and

∥∥∥F−1x− F−1y
∥∥∥ ≤ 1

h− 1‖x− y‖, x, y ∈ F (M).

Theorem 1.13. (Dominated convergence theorem S, Lebesgue, [15]) Let Ω a nonempty
set and (fn) be a sequence of functions in L1 that satisfy

(i) fn(x)→ f(x) a.e.on Ω,
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(ii) there is a function g ∈ L1 such that for all n, |fn(x)| ≤ g(x) a.e.on Ω.

Then f ∈ L1 and ‖ fn − f ‖1 → 0. where ‖ f ‖1 =
∫
Ω

|f(x)|dx.

Definition 1.19. Let f : X → Y, where (X,Σ,µ) is a measure space and Y is a topological
vector space. We say that f is pettis integrable if

ϕ ◦ f ∈ L1(X,Σ,µ) for all ϕ ∈ Y ∗.

And there exist a vector e ∈ Y so, that

∀ϕ ∈ Y ∗ : 〈ϕ, e〉 =
∫
X
〈ϕ, f(x)〉dµ(x).

Theorem 1.14. (Dominated convergence theorem W, [25] ) Let f be a function fromM
into X satisfying the following two conditions:

(a) There exists a sequence of Pettis integrable functions

fn :M→ X, n ∈ N, such that lim
n
x∗fn = x∗f in measure, for each x∗ ∈ X∗,

(b) There exists a Pettis integrable function g :M→ X such that |x∗fn| ≤|x∗g| µ.a.e
for each x∗ ∈ X∗ and n ∈ N.

Then f is Pettis integrable and lim
n

∫
E

fndµ =
∫
E

fdµ weakly for all E ∈ Σ.

Definition 1.20. Let X be a Banach space. An operator f : X → X is said to be:

• Compact 2 if f(B) is relatively compact for every bounded subset B ⊂ X.

• Weakly compact if f(B) is relatively weakly compact whenever B is a bounded
subset of X.

2There is some books which add the continuity condition.
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Chapter 2
Fixed Point Theorems Under Strong
Topology Using MNC

The aim of this chapter is to give some generalisation of Schausder’s and Krasnoselskii’s
fixed point using the measure of noncompactness.

2.1 Generalisation of Schauder’s Fixed Point Theo-

rem Using Measure of Noncompactness

At first, let us recall the well-known Schauder fixed point theorem that will be used and
generalised later.

Theorem 2.1. ( Schauder, 1930 [29]) LetM be a nonempty, convex and compact subset
of a Banach space X. Then, every continuous mapping T :M→M has at least one fixed
point.

2.1.1 Darbo’s Fixed Point Theorem

In 1955, Darbo extended the Schauder fixed point theorem to the setting of non-compact
operators, introducing the notion of (k, µ)-set contraction as follows:

Definition 2.1. Let X be a Banach space, and let µ a measure of noncompactness. A
self-mapping T : X −→ X is said to be a (k, µ)-set contraction if T is bounded, and there
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exists some constant k ≥ 0 such that

µ(TB) ≤ kµ(B),

for every nonempty bounded subset B of X.

Example 2.1. Any compact mapping is a (0, µ)-set contraction.

Theorem 2.2. (Darbo 1955 [8]) Let M be a nonempty, bounded, closed and convex
subset of a Banach space X and let T : M →M be a continuous operator. If T is a
(k, µ)-set contraction, where µ is an arbitrary measure of noncompactness and k ∈ (0, 1[,
then T has at least one fixed point, and the set of fixed points of T belongs to kerµ; i.e.,

µ(Fix(T )) = µ({x ∈M : Tx = x}) = 0.

Proof. Consider the sequence of sets

Mn =

 M0 =M if n = 0,
co(TMn−1) otherwise.

Then:

µ(Mn+1) = µ(co(TMn)) = µ(TMn) ≤ kµ(Mn) ≤ · · · ≤ kn+1µ(M0),

and consequently:

lim
n→∞

µ(Mn) = 0.

Because Mn+1 ⊂ Mn and which means that (Mn)n∈N is decreasing sequence, and since

µ generalise the Contor’s intersection theorem, we infer that M∞ =
∞⋂
n=0

Mn is a convex

closed compact set, and we have TM∞ ⊂M∞, then by Schauder fixed point theorem T

has at least one fixed point.
And we have:

µ(Fix(T )) = µ({x ∈M : Tx = x}) = µ({x ∈M∞ : Tx = x}) ≤ µ(M∞) = 0.

Which give us Fix(T ) ∈ kerµ. �
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2.1.2 Sadoveskii’s Fixed Point Theorem

In 1967, Sadoveskii gave a fixed point result more general than the Darbo theorem using
the concept of condensing operator which is define in such a way:

Definition 2.2. Let X be a Banach space, and let µ a measure of noncompactness. A
self-mapping T : X −→ X is said to be a µ-condensing if T is bounded, and the inequality
holds:

µ(TB) < µ(B),

for every nonempty bounded subset B of X.

Theorem 2.3. (Sadoveskii 1967 [31]) LetM be a nonempty, bounded, closed and convex
subset of a Banach space X, and let T : M → M be a continuous operator. If T is a
µ-condensing, where µ is a measure of noncompactness which has the maximum property,
then T has at least one fixed point, and:

µ(Fix(T )) = 0.

Proof. Let us choose a point m ∈M and denote by Σ the class of all closed and convex
subsets K of C such that m ∈ K and T (K) ⊂ K; that is:

Σ = {K ⊂M;K is closed, convex and T -invariant with m ∈ K} .

Also set
B =

⋂
K∈Σ

K,

and
C = co(T (B) ∪ {m}).

Obviously Σ 6= ∅ as m ∈ Σ and B 6= ∅ as m ∈ B.
Furthermore, we have:

T (B) = T (
⋂
K∈Σ

K) ⊂
⋂
K∈Σ

T (K) ⊂
⋂
K∈Σ

K = B,

and so, we have
T : B → B.
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Now we want to show that B = C. Indeed, since m ∈ B, T (B) ⊂ B and B is closed and
convex; it follows that C = co(T (B) ∪ {m}) ⊂ B. This implies T (C) ⊂ T (B) ⊂ C and so,
C ∈ Σ, and hence B ⊂ C. Therefore the properties of µ now imply that

µ(B) = µ(C) = µ(T (B) ∪ {m}) = max{µ(T (B)), µ({m})} = µ(T (B)).

Since T is µ-condensing, it follows that µ(B) = 0 so, B is compact. Obviously B is also
convex. Thus from Schauder fixed point theorem there is a fixed point for the mapping
T :M→M.

And since we have T (Fix(T )) = Fix(T ), and µ is condensing then µ(Fix(T )) = 0. �

2.2 Non-compact Type Krasnoselskii Fixed Point

In 2015, Xiang and Georgiev gave some user-friendly forms of Krasnoselskii fixed
point theorems, where they showed the sufficient conditions which ensure the Lipschitz
invertibility of (I − T ). The following two subsections explain this.

2.2.1 The Expansive Case

Lemma 2.1. [33] Let T : X → X be Lipschitzian with constant β > 0. Assume that for
each y ∈ X, the map Ty : X → X defined by Tyx = Tx+ y satisfies that T py is expansive
and onto for some p ∈ N. Then (I−T ) maps X onto X, the inverse of F := I−T : X → X

exists, and ∥∥∥F−1x− F−1y
∥∥∥ ≤ γp‖x− y‖, x, y ∈ X, (2.1)

where
γp = βp − 1

(β − 1) [lip (T p)− 1] .

Proof. Let y ∈ X be an arbitrary point. Because T py is expansive, it follows that
∥∥∥T py x− T py z∥∥∥ ≥ lip

Ä
T py
ä
‖x− z‖, ∀x, z ∈ X.

Now, we claim that both (I − T ) and (I − T p) map X onto X. Indeed, notice that T py is
onto; thus, Lemma 1.6 ensures the existence of a unique x∗ ∈ X such that T py x∗ = x∗. It
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then follows by Corollary 1.2 that x∗ is the unique fixed point of Ty. Hence, we have

(I − T )x∗ = y,

which gives that I − T : X → X is onto. Observe that T p is expansive and onto. Then an
application of Lemma 1.6 to T̃yx = T px+ y shows there is a unique x∗ so, that T̃yx∗ = x∗,

implying I − T p : X → X is onto. So, the claim is proved. Next, for each x, y ∈ X, by
expansiveness of T p, one easily obtains that

‖(I − T p)x− (I − T p) y‖ = ‖(x− y)− (T p(x)− T p(y))‖

≥ | ‖(T p(x)− T p(y))‖ − ‖(x− y)‖ |

≥ ‖(T p(x)− T p(y))‖ − ‖(x− y)‖

≥ [lip (T p)− 1] ‖x− y‖ ≥ 0,

which shows that (I − T p) is one-to-one. Summing up the aforementioned arguments,
we derive that (I − T p)−1 exists on X. Therefore, we infer that (I − T )−1 exists on X,
because

(I − T )−1 =
exists︷ ︸︸ ︷

(I − T p)−1
p−1∑
k=0

T k︸ ︷︷ ︸
exists

. (2.2)

From the previous, Then Lemma 1.7 entails that∥∥∥(I − T p)−1 x− (I − T p)−1 y
∥∥∥ ≤ 1

lip (T p)− 1‖x− y‖, ∀x, y ∈ (I − T p) (X).

By definition,
Lip
Ä
(I − T p)−1ä ≤ 1

lip (T p)− 1 . (2.3)

A series of induction calculations yields that

∥∥∥T kx− T ky∥∥∥ ≤ β
∥∥∥T k−1x− T k−1y

∥∥∥
...

≤ βk‖x− y‖, ∀x, y ∈ X and k ∈ N,

(2.4)

and for k = p, and using the expensiveness of T p we get

lip (T p) ‖x− y‖ ≤ ‖T px− T py‖ ≤ βp‖x− y‖, ∀x, y ∈ X.

Recalling lip (T p) > 1, we obtain β > 1. So, we conclude from (2.2), (2.3) and (2.4) that
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Lip
Ä
(I − T )−1ä ≤ Lip

Ä
(I − T p)−1ä p−1∑

k=0
Lip
Ä
T k
ä

≤ 1
lip (T p)− 1

p−1∑
k=0

βk

= βp − 1
(β − 1) (lip (T p)− 1) ,

which proves the lemma. �

Corollary 2.1. [33]
Let T : X → X be a bounded linear operator. Assume that T p is expansive and onto

for some p ∈ N. Then the conclusion of Lemma 2.1 holds. In such case, Lip(T ) = ‖T‖.

Proof. Because T is a bounded linear operator, Lip(T ) = ‖T‖. Let y ∈ X be fixed. By
induction, one deduces that

Tyx = Tx+ y

T 2
y x = Ty(Tx+ y) = T (Tx+ y) + y = T 2x+ Ty + y

...

T ky x = T kx+ T k−1y + · · ·+ Ty + y, for all k ∈ N.

This shows
∥∥∥T kx− T kz∥∥∥ =

∥∥∥T ky x− T ky z∥∥∥ , for all k ∈ N and for all x, z ∈ X.

Particularly, for k = p

lip (T p) ‖x− y‖ ≤ ‖T px− T pz‖ =
∥∥∥T py x− T py z∥∥∥ , for all x, z ∈ X.

Consequently, T py is expansive and onto, and so, Lemma 2.1 works. �

Lemma 2.2. [33] LetM be a subset of X. Assume that T :M→ X is k-Lipschitz map,
that is,

‖Tx− Ty‖ ≤ k‖x− y‖, x, y ∈M.

Then for each bounded subset Ω ofM, we have

α(T (Ω)) ≤ kα(Ω).
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Now, we are ready to state and prove the first result of this section.

Theorem 2.4. [33] Let K ⊂ X be a nonempty, bounded, closed and convex subset
suppose that T : X → X and S : K → X such that

(i) T fulfils the conditions of Lemma 2.1;

(ii) S is a strictly γ−1
p -set contractive map (or a γ-set contractive map with γ < γ−1

p );

(iii) [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K.

Then there exists a point x∗ ∈ K with Sx∗ + Tx∗ = x∗.

Proof. Because T : X → X satisfies all conditions of Lemma 2.1 (I − T ) maps X onto
X. Because S : K → X, it follows that for every x ∈ K, there exists y ∈ X such that

y − Ty = Sx ⇐⇒ (I − T )y = Sx.

By Lemma 2.1 again, there exists (I − T )−1, and thus, from (iii) and the previous equality,
we obtain y = (I − T )−1Sx ∈ K. Now, let A be a subset of K. From (2.1), (I − T )−1 is
γp-Lipschitz so, by the Lemma 2.2 we infer

α
ÄÄ

(I − T )−1S
ä

(A)
ä
≤ γpα(S(A)),

which, together with (ii), implies that (I −T )−1S : K → K is a condensing map. Applying
Sadoveskii’s fixed point Theorem 2.3, we obtain that there exists an x∗ ∈ K such that
(I − T )−1Sx∗ = x∗, which is the same as Sx∗ + Tx∗ = x∗. The proof of the theorem is
thus complete. �

An easy consequence of Corollary 2.1 and Theorem 2.4 is the following.

Corollary 2.2. [33] In Theorem 2.4 if only (i) is replaced by that

(i’) T : X → X is a linear and bounded operator, and T p is expansive and onto for some
p ∈ N.

Then there exists a point x∗ ∈ K with Sx∗ + Tx∗ = x∗.
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2.2.2 Contraction case

The following result is analogous to Lemma 2.1 and a basic tool to consider the case
when T py (for some p ∈ N) is a contractive map.

Lemma 2.3. [33] Let T : X → X be Lipschitz with constant β ≥ 0 Assume that for each
y ∈ X, the map Ty : X → X defined by Tyx = Tx+ y satisfies that T py is contractive for
some p ∈ N. Then (I − T ) maps X onto X, the inverse of F := I − T : X → X exists and

∥∥∥F−1x− F−1y
∥∥∥ ≤ ρp‖x− y‖, x, y ∈ X, (2.5)

where

ρp =


p

1−Lip(T p) , if β = 1,
1

1−β , if β < 1,
βp−1

(β−1)[1−Lip(T p)] , if β > 1.

Proof. Since T py is contraction, using Lemma 1.3, and using the similar arguments to
Lemma 2.1 we obtain that (I − T p)−1 exists.

The contraction of T py is also give us the existence and uniqueness of x∗ such that
T py x

∗ = x∗, now using Theorem 1.12 we deduce that Tyx∗ = x∗ for all y ∈ X which means
that (I − T ) is onto.
And consequently, (I − T )−1 exists on X because of (2.2). Going back to (2.2) and (2.4),
one concludes that

(1) if β = 1,
p−1∑
k=0

βk = p, and

Lip
Ä
(I − T )−1ä ≤ 1

1− Lip (T p)

p−1∑
k=0

βk = p

(1− Lip (T p)) .

(2) if β < 1,
p−1∑
k=0

βk = 1− βp
1− β , and

Lip
Ä
(I − T )−1ä ≤ 1

1− Lip (T p) ·
p−1∑
k=0

βk = 1
(1− Lip (T p)) ·

1− βp
1− β ,

since T is β-Lipschitz with β < 1 in this case, we infer that Lip(T p) = βp, so

Lip
Ä
(I − T )−1ä ≤ 1

1− β .
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(3) if β > 1,
p−1∑
k=0

βk = 1− βp
1− β , and

Lip
Ä
(I − T )−1ä ≤ 1− βp

1− Lip(T p)(1− β) .

In conclusion,

(I − T )−1 ≤


p

1−Lip(T p) , if β = 1,
1

1−β , if β < 1,
βp−1

(β−1)[1−Lip(T p)] , if β > 1.

This proves the desired estimate(2.5). �

Corollary 2.3. [33] Let T : X → X be a linear and bounded operator. Assume that T p

is contractive for some p ∈ N. Then the conclusions of Lemma 2.3 hold.

Proposition 2.1. [33] Let T be the same as Corollary 2.3. Then T has a unique fixed
point in X, and T is a ‖T‖-set contractive map. Obviously, the number ‖T‖ may be larger
than 1.

Combining Lemmas 2.3 and 2.2 and the ideas used to prove Theorem 2.4, one can easily
derive the following Krasnoselskii fixed point result.

Theorem 2.5. [33] Let K ⊂ X be a nonempty, bounded, closed and convex subset.
Suppose that T : X → X and S : K → X such that

(i) T satisfies the conditions of Lemma 2.3;

(ii) S is a strictly ρ−1
p -set contractive map (or a ρ-set contractive map with ρ < ρ−1

p );
and

(iii) [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K.

Then the sum S + T possesses at least one fixed point in K.

Corollary 2.4. [33] In Theorem 2.5, if only (i) is replaced by that

(i’) T : X → X is a linear and bounded operator, and T p is contractive for some p ∈ N,
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then S + T has at least one fixed point in K.

Inspired by the proofs of Theorems 2.4 and 2.5, we now can formulate an abstract fixed
point theorem that summarizes Theorems 2.4 and 2.5.

Theorem 2.6. [33] Let K ⊂ X be a nonempty, bounded, closed and convex subset.
Suppose that T : X −→ X and S : K −→ X such that

(i) (I − T )−1 is Lipschitz invertible with constant γ > 0;

(ii) S is a strictly γ−1-set contractive map (or a ρ-set contractive map with ρ < γ−1);
and

(iii) S(K) ⊂ (I − T )(X) and [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K.

Then the equation Sx+ Tx = x has at least one solution in K.

2.2.3 An general case

In this subsection, we study modifications of Krasnoselskii fixed point theorem given
by Xiang and Georgiev in the case where (I − T ) is one-to-one. To do so, the following
notation will be employed.
Notation: LetM and K be two subsets of X; T :M→ X and S : K → X two mappings.
We shall denote by F = F(M,K;T, S) the following set

F = {x ∈M : x = Tx+ Sy for some y ∈ K}.

Theorem 2.7. [33] Let K be a nonempty, bounded, closed and convex subset of X with
K ⊂ D(T ) ⊂ X and T : D(T )→ X a map. Suppose that S : K → X is continuous such
that

(i) (I − T ) is one-to-one;

(ii) α(T (A) + S(A)) < α(A) for all A ⊂ K with α(A) > 0;

(iii) if {xn}n∈N ⊂ F(D(T ),K;T, S) with xn → x and Txn → y, then x ∈ D(T ) and
y = Tx; and
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(iv) S(K) ⊂ (I − T )(D(T )) and [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K.

Then the sum S + T has at least one fixed point in K.

Proof. Because (I − T ) : D(T )→ X is one-to-one, the inverse of (I − T )−1 exists on its
range (I − T )(D(T )). From S : K → X and S(K) ⊂ (I − T )(D(T )), we conclude that the
operator N = (I − T )−1S : K → D(T ) is well defined and that the set F is nonempty.
For each x ∈ F , by the definition of F , there exists a y ∈ K such that x = Tx+ Sy, that
is, x = Ny. This shows F ⊂ N(K). On the other hand, if x ∈ N(K), then there exists a
y ∈ K so, that Ny = x or equivalently x = (I − T )−1Sy or (I − T )x = Sy. Consequently,
x ∈ F , from which it follows N(K) ⊂ F and then F = N(K).
Let x ∈ F . Then there exists a y ∈ K such that x = Tx + Sy. The second part of (iv)
then gives x ∈ K. Therefore, F ⊂ K and thus N maps K into itself.
Now, let x0 ∈ K and

A = {A : x0 ∈ A ⊂ K, A is a closed, convex set and N(A) ⊂ A} .

Because x0 ∈ K, K is closed, convex and F = N(K) ⊂ K, we obtain that K ∈ A, that is,
A 6= ∅. Moreover, for any A ∈ A, we have

(I − T )−1S(A) = (I − T + T )(I − T )−1S(A) = S(A) + T (I − T )−1S(A).

The definition of A gives (I−T )−1S(A) = N(A) ⊂ A, and so, we obtain from the previous
equality

(I − T )−1S(A) ⊂ T (I − T )−1S(A) + S(A) ⊂ T (A) + S(A).

This fact, together with (ii), yields that

α(N(A)) ≤ α(T (A) + S(A)) < α(A) for all A ∈ A with α(A) > 0. (2.6)

Put A0 =
⋂
A∈A

A. Then x0 ∈ A0 ⊂ K, A0 is a closed, convex set and N (A0) ⊂ A0, and

therefore A0 ∈ A. Notice that co {N (A0) , x0} ⊂ A0.Hence, we have

N (co {N (A0) , x0}) ⊂ N (A0) ⊂ co {N (A0) , x0} ,

which implies that co {N (A0) , x0} ∈ A. The definition ofA0 then yields co {N (A0) , x0} =
A0. Thus, by the properties of α we obtain

α (A0) = α (co {N (A0) , x0}) = α ({N (A0) , x0}) = α (N (A0)) . (2.7)
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Recalling that A0 ∈ A, we then deduce from (2.6) and (2.7) that α (A0) = 0, thus entails
that A0 is a nonempty compact convex subset of K and N (A0) ⊂ A0.
We next verify that N : A0 → A0 is continuous. Indeed, let {xn}n∈N be a sequence in A0

with xn → x. Set yn = (I − T )−1Sxn and y = (I − T )−1Sx (this is well-defined because
x ∈ A0 ⊂ K). Then (I − T )yn = Sxn and (I − T )y = Sx. Hence, yn, y ∈ A0 ∩ F , and
so, {yn}n∈N has a subsequence {ynk

}k∈N converging to some y0 ∈ A0. Evidently, by the
continuity of S,

Tynk
= ynk

− (I − T )ynk
→ y0 − Sx = y0 − (I − T )y. (2.8)

It follows from (2.8) and (iii) that y0 − (I − T )y = Ty0, and thus, y0 = y = (I − T )−1Sx

because (I − T ) is injective. Summing up the previous arguments, we have derived

(I − T )−1Sxnk
→ (I − T )−1Sx.

We next claim that
(I − T )−1Sxn → (I − T )−1Sx.

Suppose the contrary; then there exists a neighbourhood U of (I − T )−1Sx and a sub-
sequence

¶
xnj

©
j∈N of {xn}n∈N such that (I − T )−1Sxnj

/∈ U for all j ≥ 1. Naturally,¶
xnj

©
j∈N converges to x; then reasoning as before, we may extract a subsequence {xnjk

}k∈N
of
¶
xnj

©
j∈N so, that (I − T )−1Sxnjk

→ (I − T )−1Sx. But this is a contradiction, be-
cause (I − T )−1Sxnj

/∈ U for all j ≥ 1. The claim is hence confirmed, and finally,
(I − T )−1S : A0 → A0 is continuous.
Now, the celebrated Schauder fixed point theorem guarantees that N = (I − T )−1S has at
least one fixed point in A0. This finishes the proof of the theorem. �

Corollary 2.5. [33] Let K be a nonempty, bounded, closed and convex subset of X and
T : D(T ) ⊂ X → X a map. Suppose that S : K → X is continuous such that

(i) (I − T ) is continuously invertible;

(ii) α ((I − T )−1S(A)) < α(A) for all A ⊂ K with α(A) > 0; and

(iii) S(K) ⊂ (I − T )(D(T )) and [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K.

Then the sum S + T admits one fixed point in K.
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In the following theorem we are replaced the boundedness of K and the requirement of
K ⊂ D(T ) by a compactness condition on the set F(D(T ),K;T, S).

Theorem 2.8. [33] Let K ⊂ X be a nonempty, closed and convex subset and
T : D(T ) ⊂ X → X a mapping. Suppose that S : K → X is continuous such that

(i) (I − T )is one-to-one;

(ii) the set F(D(T ),K;T, S) is relatively compact;

(iii) if {xn}n∈N ⊂ F for which xn → x and Txn → y, then x ∈ D(T ) and y = Tx; and

(iv) S(K) ⊂ (I − T )(D(T )) and [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K.

Then the sum S + T has one fixed point in K.

Proof. It is sufficient to show that the operator (I − T )−1S : K → K is compact and
continuous. Thanks to the fact F = (I − T )−1S(K) and (ii), we obtain that
(I − T )−1S : K → K is compact. For the continuity, let yn, y ∈ K with yn → y, and let
xn = (I − T )−1Syn and x = (I − T )−1Sy. The definition of F implies that xn ∈ F and
(I − T )xn → Sy by the continuity of S. In view of xn ∈ F where F is relatively compact,
{xn}n∈N has a subsequence {xnk

}k∈N converging to some x0. Accordingly, Txnk
→ x0−Sy.

The closedness of T in F (condition (iii)) therefore tells us that x0 − Sy = Tx0, that is,
x0 = (I − T )−1Sy. Because I − T is injective, it follows x0 = x.
The same argument as performed at the end proof of Theorem 2.7 shows xn → x, and
consequently, (I − T )−1S : K → K is continuous.

Hence Schauder’s fixed point theorem works. �

2.3 Application

Let X = C([a, b],R) with the usual supremum norm ‖x‖ = max
t∈[a,b]

|x(t)|. In this present
section, our main objective is to prove some existence and unique (in a special case) results
for the following Volterra-Hammerstein’s integral equation

x(t) = g(t, x(t)) + λ
∫ t

a
κ(t, s)f(s, x(s))ds, (2.9)
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where κ defined on ∆ = {(t, s) : a ≤ t ≤ b , a ≤ s ≤ t} is essentially bounded and
measurable and f, g : [a, b]× R→ R are continuous with f is β-Lipschitz with β > 1. We
mention that the case where f = I in equation (2.9) was studying in [33], we add some
conditions in this study to find the existence where f is non linear. To perform such task,
we shall use an explicit formula for the Hausdorff MNC in the space C([a, b];R), which
was introduced and studied in [11], this MNC defines as follows:

χ(B) = 1
2 lim
δ→0

®
sup
x∈B

ï
max
0≤r≤δ

‖x− xr‖
ò´
,

where B ∈ BX and xr denotes the r-translate of the function x, i.e.,

xr(t) =

 x(t+ r), a ≤ t ≤ b− r,
x(b), b− r ≤ t ≤ b.

Let us now introduce the operators T, S : X → X as follows:

(Tx)(t) = λ
∫ t

a
κ(t, s)f(s, x(s))ds, (2.10)

and
(Sy)(t) = g(t, y(t)). (2.11)

Then one can easily know that S : X → X is continuous and bounded because g is
continuous. Let z ∈ X we define the mapping Tz : X → X by Tzx = Tx + z. For each
x, y ∈ X, one readily derives from (2.10) that

|(Tzx)(t)− (Tzy)(t)| ≤ λ
∫ t

a
|κ(t, s)||f(s, x(s))− f(s, y(s))|ds

≤ λ
∫ t

a
|κ(t, s)|β|x(s)− y(s)|ds

≤ c(t− a)‖x− y‖,

(2.12)

where c = λ.β. ess sup
(t,s)∈∆

|κ(t, s)| <∞.
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Again we have

|(T 2
z x)(t)− (T 2

z y)(t)| ≤ λ
∫ t

a
|κ(t, s)|

∣∣∣∣f Ås, λ ∫ s

a
κ(s, σ)f(σ, x(σ))dσ + z(s)

ã
−f
Å
s, λ

∫ s

a
κ(s, σ)f(σ, y(σ))dσ + z(s)

ã∣∣∣∣ ds
≤ λ

∫ t

a
|κ(t, s)|β

∣∣∣∣λ ∫ s

a
κ(s, σ)f(σ, x(σ))dσ − λ

∫ s

a
κ(s, σ)f(σ, y(σ))dσ

∣∣∣∣ ds
≤ cλβ

∫ t

a
|κ(t, s)||(s− a)|x(s)− y(s)|ds

≤ c2(t− a)2

2! ‖x− y‖.

(2.13)

By induction, one can deduce from (2.13) and (2.12) that

|(T nz x) (t)− (T nz y) (t)| ≤ [c(t− a)]n
n! ‖x− y‖.

Hence,
‖T nx− T ny‖ ≤ [c(b− a)]n

n! ‖x− y‖. (2.14)

Notice that
lim
n→∞

[c(b− a)]n
n! = 0.

Then
p = min

®
n ∈ N : [c(b− a)]n

n! < 1
´
.

is finite, and T pz is a contraction, thanks to (2.14). On the other hand, one can also easily
deduce from (2.12) that T is M -Lipschitz with M = c(b− a) so, the use of Lemma 2.3,
we obtain that (I − T ) maps X onto X, the inverse of I − T : X → X exists, and∥∥∥(I − T )−1x− (I − T )−1y

∥∥∥ ≤ ρp‖x− y‖,∀x, y ∈ X (2.15)

where

ρp =


p

1−Lip(T p) , if M = 1,
1

1−M , if M < 1,
Mp−1

(M−1)[1−Lip(T p)] , if M > 1.

we shall study Equation (2.9) by considering three cases: M < 1, M = 1, and M > 1. Our
strategy is to apply Theorem 2.5 to find a fixed point for the operator S + T in X. The
proof will be broken up into several steps. In order to do so, assume that the functions
involved in Equation 2.9 fulfill the following conditions:
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(H1) κ is non-negative on ∆.

(H2) There are two constants B > A ≥ 0 such that

(1−m)A ≤ g(t, x) ≤ (1−m)B, ∀(t, x) ∈ [a, b]× [A,B].

where m = λ min
a≤t≤b

∫ t

a
κ(t, s)ds.

(H3) For each fixed t ∈ [a, b], x, y ∈ [A,B] with x 6= y, we have

f(t, 0) ≡ 0, x(t) ≤ f(t, x(t)),

g(t, 0) ≡ 0, |g(., x)− g(., y)| ≤ φ(|x− y|),

where φ : R+ → R+ is a non-decreasing and continuous function satisfying the growth
condition φ(r) < (1−M)r for all r > 0.

Theorem 2.9. Suppose that the conditions (H1) –(H3) hold. Then Equation (2.9) has
one and only one positive solution x ∈ C([a, b],R) satisfying A ≤ x(t) ≤ B for all t ∈ [a, b].

Proof.
Claim 1: We want to prove the third condition in theorem 2.5. To see this, we define

K = {x ∈ X : A ≤ x(t) ≤ B, t ∈ [a, b]}.

Then K is a closed, convex, and bounded subset of X. Let x, y ∈ K. We have from (2.10),
(2.11) and (H3) that

(Tx)(t) + (Sy)(t) = λ
∫ t

a
κ(t, s)f(s, x(s))− f(s, 0)ds+ g(t, y(t))− g(t, 0)

≤M |x(t)− 0|+ (1−M)|y(t)− 0|

≤MB + (1−M)B = B.

(2.16)

On the other hand,

(Tx)(t) + (Sy)(t) = λ
∫ t

a
κ(t, s)f(s, x(s))ds+ g(t, y(t))

≥ mA+ (1−m)A = A.

(2.17)
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It follows from (2.16) and (2.17) that Tx+ Sy ∈ K for all x, y ∈ K. Hence, the condition
(iii) of Theorem 2.5 is satisfied.

Recall M < 1, and then T : X → X is a contraction; that is, the assumption (i) of
Theorem 2.5 is fulfilled and follows from (2.15) that (I − T )−1 is Lipschitz invertible with
constant (1−M)−1.

Claim 2: We show that S is a strictly (1−M)-set contractive map. To this end, let
B be a subset of K and x ∈ B. Looking that

(Sx)r(t) = g(ζ, xr(t)),

where

ζ =

 t+ r, a ≤ t ≤ b− r,
b, b− r ≤ t ≤ b.

And we have

|(Sx)(t)− (Sx)r(t)| ≤ |g(t, x(t))− g(t, xr(t))|+ |g(t, xr(t))− g(ζ, xr(t))|

≤ φ(|x(t)− xr(t)|) + |g(t, xr(t))− g(ζ, xr(t))|.
(2.18)

Notice that φ is continuous and nondecreasing and the function g is uniformly continuous
on [a,b]× [A,B], thus, it follows from (2.18) that

lim
δ→0

®
sup
x∈B

ï
max
0≤r≤δ

‖(Sx)− (Sx)r‖
ò´
≤ φ

Ç
lim
δ→0

®
sup
x∈B

ï
max
0≤r≤δ

‖x− xr‖
ò´å

< (1−M)
Ç

lim
δ→0

®
sup
x∈B

ï
max
0≤r≤δ

‖x− xr‖
ò´å

,

which means that
χ(S(B)) ≤ (1−M)χ(B),

which illustrates that S is a strictly (1−M)-set contractive map. Now, invoking Theorem
2.5, we obtain that Equation (2.9) has at least one solution in K.
Finally, let x, y ∈ K be any two solutions of Equation (2.9). Again we have

|x(t)− y(t)| ≤
∣∣∣∣∣
∫ t

a
κ(t, s)β|x(s)− y(s)|ds

∣∣∣∣∣+ |g(t, x(t))− g(t, y(t))|

≤M‖x− y‖+ |g(t, x(t))− g(t, y(t))|.

Suppose now there exists t0 ∈ [a, b] such that x (t0) 6= y (t0) . Then (H3) give
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‖x− y‖ ≤M‖x− y‖+ φ(‖x− y‖)

< M‖x− y‖+ (1−M)‖x− y‖,

which is a contradiction. This completes the proof. �

Next, let us investigate the supercritical case when M ≥ 1. In this case, we rewrite ρp
using the definition of p as

ρp =


pp!

p!−[c(b−a)]p , if M = 1,
(Mp−1)p!

(M−1){p!−[c(b−a)]p} , if M > 1.

We now assume that the functions concerning Equation (2.9) satisfy the following hypothe-
ses:

(H4) There exists an R > 0 such that ρpgR ≤ R, where

gR = sup{|g(t, y)| : (t, y) ∈ [a, b]× [−R,R]}.

(H5) For each fixed t ∈ [a, b], we have

|g(t, x)− g(t, y)| ≤ φp(|x− y|),∀x, y ∈ [−R,R],

where φp : R+ → R+ is non-decreasing continuous function satisfying φp(r) < ρ−1
p r,

for all r > 0.

(H6) For each fixed t ∈ [a, b] we have
f(t, 0) ≡ 0

By invoking Theorem 2.5, we derive the following result.

Theorem 2.10. Suppose that the conditions (H4) , (H5) and (H6) hold. Then Equation
(2.9) has at least one solution in C([a, b],R).

Proof. The use of condition (H6) give us

(T0)(t) = 0 ∀t ∈ [a, b]

which means that
((I − T )0)(t) = 0 ∀t ∈ [a, b].
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by the invertibility of (I − T ) we infer that

((I − T )−10)(t) = 0 ∀t ∈ [a, b]. (2.19)

Now, if x = Tx+ Sy with y ∈ BR, then one has

x(t) = (I − T )−1g(t, y(t)).

Now, by (2.19) and (H4) we can easily deduce hat

‖x‖ = sup
t∈[a, b]

∣∣∣(I − T )−1g(t, y(t))
∣∣∣

= sup
t∈[a, b]

∣∣∣(I − T )−1g(t, y(t))− ((I − T )−1(0))(t)
∣∣∣

≤ sup
t∈[a, b]

ρp |g(t, y(t))− 0|

≤ ρpgR ≤ R

that is, x ∈ BR. The remaining argument is similar to that of Theorem 2.9 and therefore
is omitted. �
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Chapter 3
Fixed Point Theorems Under Weak Topology
Using MWNC

In this chapter, we study some generalisation of Schauder’s and Krasnoselskii’s fixed
point theorems invoking the technique of measures of weak noncompactness in Banach
spaces, in the context that the involved operators are not weakly compact.

3.1 Generalisation of Tychonoff’s Fixed Point Theo-

rem Using Measure of Weak Noncompactness

Let’s us show some fixed point theorems. The following Tychonoff’s Theorem, stated
for Banach spaces endowed with it weak topology.

Theorem 3.1. (Tychonoff [20]) Let X be a Banach space and letM be a weakly compact,
convex subset of X. Then, each weakly continuous mapping T , T :M→M, has a fixed
point.

Definition 3.1. Let X be a Banach space. A map T :M⊂ X → X is called
(k, ψ)-weakly set contractive (resp. ψ-weakly condensing), if it is (k, ψ)-set contractive
(resp. ψ-condensing) for some measure of weak noncompactness ψ.

Presently, we want to state Darbo’s fixed point theorem under weak topology.
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Theorem 3.2. [20] Let M is non void, bounded, closed, convex subset of X. Each
weakly continuous mapping T, T :M→M⊂ X, which is a (β,ω)-weakly set contractive
mapping, has a fixed point.

Proof. Let M1 = M and Mn+1 = co (TMn). It is clear that the sequence (Mn)n∈N
consists of nonempty closed convex decreasing subsets ofM. Since T is (β,ω)-weakly set
contractive, then we have

ω (M2) = ω (co (TM1)) = ω (TM1) 6 βω (M1) .

Proceeding by induction we get:

ω (Mn+1) 6 βnω(M)

and therefore lim
n→∞

ω (Mn) = 0. Using Contor’s property (vi) of ω(·) we infer that

N :=
∞⋂
n=1

Mn is a nonempty closed convex weakly compact subset ofM. Moreover, it is

easily seen that TN ⊂ N . Now, the use of Theorem 3.1 concludes the proof. �

Let N be a nonlinear operator from X into itself. In some cases, we deal with operators
which are continuous and weakly compact. Since neither the continuity implies the weak
continuity nor the weak compactness implies the strong compactness, we can’t use Schauder
or Tychonoff’s fixed point theorems, for this reason Latrach, Taoudi, and Zeghal[24] used
the following conditions:

(A1)

 If (xn)n∈N is a weakly convergent sequence in X, then
(Nxn)n∈N has a strongly convergent subsequence in X.

(A2)

 If (xn)n∈N is a weakly convergent sequence in X, then
(Nxn)n∈N has a weakly convergent subsequence in X.

Remark 3.1. 1) Operators satisfying (A1) or (A2) are not necessarily weakly contin-
uous.

2) Continuous mappings satisfying (A1) are called ws-compact mappings and continuous
mappings satisfying (A2) are called ww-compact mappings.
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3) Every (β,ω)-weakly set contractive map satisfies (A2).

4) A map N satisfies (A2) if and only if it maps relatively weakly compact sets into
relatively weakly compact ones.

5) A map N satisfies (A1) if and only if it maps relatively weakly compact sets into
relatively compact ones.

6) The condition (A2) holds true for every bounded linear operator.

7) In reflexive Banach spaces, a mapping N verifying (A1) is compact. This follows
from the fact that bounded sets in reflexive Banach spaces are relatively weakly
compact.

Theorem 3.3. [24] Let M be a nonempty closed convex subset of a Banach space X.
Assume that T :M→M is a continuous map which verifies (A1). If T (M) is relatively
weakly compact, then there exists x ∈M such that Tx = x.

Proof. Let C = co(TM) the closed convex hull of TM. Since M is a closed convex
subset of X satisfying T (M) ⊆ M, then C ⊆ M and therefore TC ⊆ TM ⊆ co(TM).
This shows that T maps C into itself. By hypothesis, TM is relatively weakly compact,
so applying the Krein–S̆mulian theorem one sees that C is weakly compact too. Let
{θn}n∈N be a sequence in C, then it has a weakly convergent subsequence, say {θnk

}k∈N. By
hypothesis {Tθk}k∈N has a strongly convergent subsequence and therefore TC is relatively
compact. Now the use of the Schauder fixed point theorem concludes the proof. �

Theorem 3.4. [24] LetM be a nonempty bounded closed convex subset of a Banach
space X. Assume that T : M → M is a continuous map satisfying (A1). If T is
(β,ω)-weakly set contractive, then there exists x ∈M such that Tx = x.

Proof. Let M1 = M and Mn+1 = co (TMn). It is clear that the sequence (Mn)n∈N
consists of nonempty closed convex decreasing subsets ofM. Since T is (β,ω) -weakly set
contractive, then we have

ω (M2) = ω (co (TM1)) = ω (TM1) 6 βω (M1) .
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Proceeding by induction we get:

ω (Mn+1) 6 βnω(M)

and therefore lim
n→∞

ω (Mn) = 0. Using Contor’s property (vi) of ω(.) we infer that

N :=
∞⋂
n=1

Mn is a nonempty closed convex weakly compact subset ofM. Moreover, it is

easily seen that TN ⊂ N . Accordingly, TN is relatively weakly compact. Now, the use of
Theorem 3.3 concludes the proof. �

We can generalise this last theorem by weakly condensing hypothesis as follows:

Theorem 3.5. [30] Let M ⊂ X be a nonempty closed, convex and bounded subset.
Suppose that T : M →M is a continuous map satisfying the hypothesis (A1). If T is
weakly condensing, then there exists x∗ ∈M such that Tx∗ = x∗.

Arino, S. Gautier, and J.P. Penot in 1984, [6] established the following interesting fixed
point theorem for weakly sequentially continuous mappings between Banach spaces.

Theorem 3.6. (Arino, Gautier, Penot) LetM be a nonempty weakly compact convex
subset of a Banach space X. Then each sequentially weakly continuous map
T :M→M has a fixed point inM.

Theorem 3.7. [30] Let M ⊂ X be a nonempty, bounded, closed and convex subset.
Suppose that T :M→M is weakly sequentially continuous and weakly condensing map.
Then T has at least one fixed point inM.

Lemma 3.1. [2] LetM be a subset of X and T :M→ X is k-Lipschizian map. Assume
that T satisfies the hypothesis (A2) (or is a sequentially weakly continuous map). Then :

ω(T (A)) ≤ kω(A)

for each bounded subset A of M; here, ω(·) stands for the De Blasi measure of weak
noncompactness.

Proof. Let A be a bounded subset ofM and r > ω(A). There exist 0 ≤ r0 < r and a
weakly compact subset K of X such that A ⊆ K + Br0 . Now we show that

TA ⊆ TK + Bkr0 ⊆ TK
w + Bkr0 . (3.1)
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To see this let x ∈ A. Then there is a y ∈ K such that ‖x − y‖ ≤ r0. Since T is
k-Lipschitzian, then ‖Tx − Ty‖ ≤ k‖x − y‖ ≤ kr0. This proves (3.1). Further, since T
satisfies (A2), then the Eberlein-Šmulian theorem implies that TKw is weakly compact.
Consequently:

ω(TA) ≤ kr0 ≤ kr.

Letting r → ω(A) we get
ω(TA) ≤ kω(A).

�

Corollary 3.1. [30] Let T : X → X be a bounded linear operator. Then
ω(T (A)) ≤ ‖T‖ω(A) for each bounded subset A of X.

Proof. We know that any bounded operator T is ‖T‖-Lipschizian, thus by the previous
lemma we get the conclusion. �

The next lemma proves that the same property holds for nonlinear contraction mapping
provided that it is ww-compact.

Lemma 3.2. [1] Let T be a ww-compact nonlinear contraction mapping on a Banach X.
Then for each bounded subset A of X one has

ω(T (A)) ≤ φ(ω(A)).

3.2 Weakly Non-compact Fixed Point Results of the

Krasnoselskii Type

In 2013, Taoudi and Xiang used the techniques of measures of weak noncompactness to
obtain some new generalized fixed point results of Krasnoselskii type, where they replaced
the weak continuity of the involved operators by the hypotheses (A1) and (A2) and
interchange the weak compactness of S by a k-weakly set contractive map with k < 1 or
not. The following theorems illustrate this.
Notation: In what follows, we are denote by ψ to a regular measure of weak noncom-
pactness.
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Theorem 3.8. [30] Let X be a Banach space and ψ a measure of weak noncompactness
on X. Let K ⊂ X be a nonempty, bounded, closed convex subset and T : X → X be a
map. Suppose that and S : K → X is sequentially weakly continuous such that:

(i) (I − T ) is invertible, S(K) ⊂ (I − T )(X) and (I − T )−1S is ψ-weakly condensing;

(ii) [x = Tx+ Sy, y ∈ K]⇒ x ∈ K (or S(K) ⊂ (I − T )(K));

(iii) if (xn) is a sequence in F(X,K;T, S) with xn ⇀ x for some x ∈ K then Txn ⇀ Tx.

Then the sum S + T possesses at least one fixed point in K.

Proof. For each y ∈ K, by the second part of (i), there exists x ∈ X with x− Tx = Sy

and by (ii) we have x = (I − T )−1Sy := Ny ∈ K. Therefore, one obtains N(K) ⊂ K. Let
x0 ∈ K and

A = {A : x0 ∈ A ⊂ K, A is a closed convex set and N(A) ⊂ A} .

Clearly, A 6= ∅ since K ∈ A. Put A0 =
⋂
A∈A

A. Then x0 ∈ A0 ⊂ K, A0 is also a closed

convex set and N (A0) ⊂ A0. Notice that co {N (A0) , x0} ⊂ A0. We thus have

N (co {N (A0) , x0}) ⊂ N (A0) ⊂ co {N (A0) , x0} ,

which shows that co {N (A0) , x0} ∈ A. It then follows that co {N (A0) , x0} = A0. Using
the properties of measures of weak noncompactness we get:

ψ (A0) = ψ (co {N (A0) , x0}) = ψ ({N (A0) , x0}) = ψ (N (A0)) .

By the ψ-condensibility of N, we obtain ψ (A0) = 0, and therefore, A0 is a nonempty
weakly compact convex set. Now we show that N : A0 → A0 is weakly sequentially
continuous. To see this, let z, zn ∈ A0 such that zn ⇀ z and set M = {zn : n ∈ N} .
Clearly, N(M) is relatively weakly compact. Thus, there is a subsequence (znk

) of (zn)
such that

Nznk
⇀ u.

Using the equality
Nznk

= Sznk
+ TNznk

,
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together with the weak sequential continuity of S and assumption (iii), we deduce u =
Tu+ Sz and thus u = (I − T )−1Sz = Nz. Accordingly

Nznk
⇀ Nz.

Now a standard argument shows that

Nzn ⇀ Nz.

Suppose the contrary, then there would exist a weak neighbourhood V w of Nz and a
subsequence

Ä
znj

ä
of (zn) such that Nznj

/∈ V w for all j ≥ 1. Naturally,
Ä
znj

ä
converges

weakly to z, then arguing as before we may extract a subsequence
Ä
znjk

ä
of
Ä
znj

ä
such

that Nznjk
⇀ Nz, which is absurd, since Nznjk

/∈ V w for all k ≥ 1. Finally, N is weakly
sequentially continuous. Now an application of Theorem 3.7 yields a point x∗ ∈ A0 with
x∗ = Nx∗ = (I − T )−1Sx∗, that is, Tx∗ + Sx∗ = x∗. �

Corollary 3.2. [30] Let K ⊂ X be a nonempty, bounded, closed and convex subset.
Suppose that T maps X into X and S : K → X is sequentially weakly continuous such
that:

(i) (I − T ) is Lipschitz invertible with constant γ > 0 and (I − T )−1 verifies (A2);

(ii) S is a (ρ,ω)-weakly set contractive map with ρ < γ−1;

(iii) S(K) ⊂ (I − T )(X) and [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K ( or S(K) ⊂ (I − T )(K));

(iv) if (xn) is a sequence in F(X,K;T, S) with xn ⇀ x for some x ∈ K then Txn ⇀ Tx.

Then the sum S + T has at least one fixed point in K.

Proof. Let A ⊂ K be bounded. We deduce from (i) and Lemma 3.1 that

ω
ÄÄ

(I − T )−1S
ä

(A)
ä
≤ γω(S(A)) ≤ ργω(A) < ω(A).

This implies that (I−T )−1S is ω-weakly condensing. The result now follows from Theorem
3.7. �
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Lemma 3.3. [30] LetM, K be two subsets of a linear normed space X,S : K → X and
T : M → X be two maps. Assume that the condition (iii) of Theorem 3.8 holds. In
addition, suppose further that the following conditions are satisfied

(i) for all z ∈ S(K), the map Tz :M→ X defined by Tzx = Tx+ z has a unique fixed
point inM; and

(ii) the set F(M,K;T, S) is relatively weakly compact.

Then S : K → X is weakly compact and S(K) ⊂ (I − T )(M).

Proof. For each x ∈ K, one can easily know from (i) that the equation

Ty + Sx = y, (3.2)

has a unique solution y = τSx ∈M. Thus, the mapping τS : K →M given by x→ τSx

is well defined. In addition, we observe that τSx ∈ F and hence τS(K) ⊂ F ⊂ M. It
follows from (3.2) that Sx = (I − T )τSx for all x ∈ K. Therefore, we infer that

S(K) = (I − T )τS(K) ⊂ (I − T )(F) ⊂ (I − T )(M). (3.3)

It is easy to see from (iii) that (I − T ) is sequentially weakly continuous on F . Notice that
F is relatively weakly compact. Thus, one can readily conclude from (3.3) that S : K → X

is weakly compact. This proves the lemma. �

Corollary 3.3. [13] Let K, S, (ii), (iii) be the same as Theorem 3.8. In addition, assume
that

(i’) T : X → X is a contraction with constant α ∈ [0,1);

(i”) the set F(M,K;T, S) is relatively weakly compact.

Then the conclusion of Theorem 3.8 holds.

We next see another version of Theorem 3.8.

Theorem 3.9. [30] Let X be a Banach space and ψ be a measure of weak noncompactness
on X. Let K ⊂ X be a nonempty, bounded, closed convex subset and T : X → X be a
map. Suppose that and S : K → X is sequentially weakly continuous such that
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(i) (I − T ) is injective;

(ii) ψ(T (A) + S(A)) < ψ(A) for all A ⊂ K with ψ(A) > 0;

(iii) S(K) ⊂ (I − T )(X) and [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K (or S(K) ⊂ (I − T )(K));

(iv) if (xn) is a sequence in F(X,K;T, S) with xn ⇀ x for some x ∈ K then Txn ⇀ Tx.

Then the sum S + T possesses at least one fixed point in K.

Proof. For each y ∈ K, by the first part of (iii), there exists x ∈ X with

x− Tx = Sy.

Again by the second part of (iii) and (i), we have x = (I − T )−1Sy := Ny ∈ K. Therefore,
one obtains N(K) ⊂ K. Let x0 ∈ K and

A = {A : x0 ∈ A ⊂ K, A is a closed convex set and N(A) ⊂ A} .

Then A is nonempty. Furthermore, for any A ∈ A one has that

(I − T )−1S(A) ⊂ T (I − T )−1S(A) + S(A) ⊂ T (A) + S(A).

This fact couples with (ii) to yield

ψ(N(A)) < ψ(A) for all A ∈ A with ψ(A) > 0. (3.4)

Put A0 =
⋂
A∈A

A. Keeping in mind (3.4), then imitating the proof of Theorem 3.8 one

derives that A0 is a nonempty weakly compact convex subset of K and N (A0) ⊂ A0. The
reasoning in Theorem 3.8 shows that N : A0 → A0 is sequentially weakly continuous. The
result then follows from Theorem 3.8. �

And we have this consequence of Theorem 3.9.

Corollary 3.4. [30] Let K be a nonempty, bounded, closed and convex subset of a Banach
space X. Suppose that S : K → X and T : X → X are two weakly sequentially continuous
mappings satisfying:

(i) S(K) is relatively weakly compact;
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(ii) T is a strict contraction with constant τ ;

(iii) (x = Tx+ Sy, y ∈ K) implies x ∈ K.

Then T + S has at least one fixed point in K.

Proof. Since T is a strict contraction with constant τ ∈ [0,1), then by Lemma 1.3 the
mapping I − T is a homeomorphism from X into (I − T )X. Next, let y be fixed in K.
The map which assigns to each x ∈ X the value Tx+ Sy defines a strict contraction from
X into X. So, by the BCP, the equation x = Tx+ Sy has a unique solution x ∈ X. By
hypothesis (iii) we have x ∈ K. Hence, S(K) ⊆ (I − T )(K). Moreover, taking into account
the sub-additivity of the De Blasi measure of weak noncompactness and using Lemma 3.1
we get for any bounded subset A of K.

ω(T (A) + S(A)) ≤ ω(T (A)) + ω(S(A)) = ω(T (A)) ≤ τω(A) < ω(A). (3.5)

The result follows from Theorem 3.9. �

Together with Lemmas 1.7-3.1 and Theorem 3.5, some new forms of Krasnoseskii’s fixed
point theorem can be derived.

Theorem 3.10. [30] Let K ⊂ X be a nonempty closed, convex and bounded subset.
Suppose that T and S map K into X such that

(i) T is an expansive mapping with constant h > 1;

(ii) (I − T )−1 satisfies the hypothesis (A2);

(iii) S is ws-compact on co(F(K,K;T, S));

(iv) z ∈ S(K) implies T (K) + z ⊃ K, where T (K) + z = {y + z| y ∈ T (K)};

(v) S is a strictly ((h− 1), ω)-weakly set contractive map (or a (k, ω)-weakly set con-
tractive map with k < h− 1).

Then there exists a point x∗ ∈ K, with Sx∗ + Tx∗ = x∗.

Remark 3.2. It is worthy of pointing out that co(F(K,K;T, S)) ⊂ K and T may not be
continuous since T is assumed only to be expansive.
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Proof. From (i) and (iv), for each y ∈ K, we know that the mapping T + Sy : K → X

satisfies the assumptions of Lemma 1.6. Hence the equation Tx+ Sy = x has a unique
solution x = τy ∈ K, so that the mapping τ : K → K is well defined. In view of Lemma
1.7, we obtain that τy = (I − T )−1Sy for all y ∈ K. Let A ⊂ K be bounded. From (ii),
Lemmas 3.1 and 1.7, we conclude that

ω(τ(A)) = ω
Ä
(I − T )−1S(A)

ä
≤ 1
h− 1ω(S(A)). (3.6)

Together with (3.6) and (v), one can see that τ : K → K is weakly condensing. We denote
by C = co(F(K,K;T, S)), then C ⊂ K. Observe that τ(K) ⊂ F . Thus, it is easy to know
that τ(C) ⊂ C. Let now x0 ∈ C and

A = {A : x0 ∈ A ⊂ C,A is a closed convex set and τ(A) ⊂ A} .

Then A is nonempty since C ∈ A. Repeating the proof of Theorem 3.8 we know that
A0 =

⋂
A∈A

A is a nonempty, weakly compact convex subset of C and τ maps A0 into A0. We

next show that τ : A0 → A0 is continuous and fulfils (A1). Indeed, let (xn) be a sequence in
A0 with xn → x in A0. Notice that A0 ⊂ C and S are continuous on C. Hence Sxn → Sx.

Furthermore, we have by Lemma 1.7 that (I − T )−1 is continuous. Since S fulfils the
condition (A1) on C and (I − T )−1 is continuous, it follows easily that τ = (I − T )−1S is
continuous and satisfies the condition (A1) on A0. Now invoking Theorem 3.5, we achieve
the proof. �

Corollary 3.5. [30] Under the conditions of Theorem 3.10, if only the condition (iv) of
Theorem 3.10 is replaced by T that maps K onto X, then there exists a point x∗ ∈ K with
Sx∗ + Tx∗ = x∗.

Proof. Since T maps K onto X, which means T (K) = X, we infer that if z ∈ S(K) so
T (K) + z ⊃ K; and we get the condition (iv) of Theorem 3.10. �

In general, the condition (iv) may be hard to be verified. The next result might be
regarded as an improvement of Theorem 3.10.

Theorem 3.11. [30] Let K ⊂ X be a nonempty closed, convex and bounded subset.
Suppose that T : X → X and S : K → X such that
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(i) T is expansive with constant h > 1;

(ii) (I − T )−1 satisfies the hypothesis (A2);

(iii) S is continuous and fulfils the condition (A1) on K;

(iv) S(K) ⊂ (I − T )(X) and [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K ( or S(K) ⊂ (I − T )(K));

(v) S is a strictly ((h− 1), ω)-weakly set contractive map (or a (k, ω)-weakly set
contractive map with k < h− 1).

Then there exists a point x∗ ∈ K with Sx∗ + Tx∗ = x∗.

Proof. For each y ∈ K, by the first part of (iv) there exists x ∈ X such that

x− Tx = Sy.

By Lemma 1.7 and the second part of (iv) we have x = (I − T )−1Sy ∈ K. As is shown
in Theorem 3.10 one has that (I − T )−1S : K → K is weakly condensing, continuous and
fulfils the condition (A1). Consequently, there is a point x∗ ∈ K with x∗ = (I − T )−1Sx∗.

This completes the proof. �

With respect to the contractive map, thanks to Lemma 1.3 and Theorem 3.9 we obtain
two types of such results. The first one is a complement to Theorem 3.11.

Theorem 3.12. [30] Let K ⊂ X be a nonempty closed, convex and bounded subset.
Suppose that T : X → X and S : K → X such that.

(i) T is a ww-compact contraction with constant α < 1;

(ii) S is ws-compact on K;

(iii) [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K ( or S(K) ⊂ (I − T )(K));

(iv) S is a strictly ((1 − α), ω)-weakly set contractive map (or a (β, ω)-weakly set
contractive map with β < 1− α).

Then there exists x∗ ∈ K with Sx∗ + Tx∗ = x∗.
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Proof. For each fixed y ∈ K, the map of X → X defined by

x→ Tx+ Sy,

is contractive. Hence there exists a unique x ∈ X such that x = Tx + Sy. By (iii) and
Lemma 1.3, we have x = (I − T )−1Sy ∈ K for each y ∈ K. Now, let A ⊂ K be bounded.
By Lemma 3.1 together with the equality :

(I − T )−1S = T (I − T )−1S + S,

we obtain that

ω
ÄÄ

(I − T )−1S
ä

(A)
ä
≤ αω

Ä
(I − T )−1S(A)

ä
+ ω(S(A)). (3.7)

Thus, for all A ⊂ with ω(A) > 0, we have

ω
Ä
(I − T )−1S(A)

ä
≤ 1

1− αω(S(A)) < ω(A). (3.8)

This shows that (I − T )−1S : K → K is a weakly condensing map.
Since (I − T )−1S : K → K is continuous and fulfils the condition (A1), Theorem 3.5

works. �

Theorem 3.13. [30] Let X be a Banach space and ψ be a measure of weak non-
compactness on X. Let K ⊂ X be a nonempty closed, convex and bounded subset.
Suppose that T : X → X and S : K → X such that

(i) T is a contraction;

(ii) S is ws-compact on K;

(iii) [x = Tx+ Sy, y ∈ K] =⇒ x ∈ K;

(iv) ψ(T (A) + S(A)) < ψ(A) for all A ⊂ K with ψ(A) 6= 0.

Then there exists a point x∗ ∈ K with Sx∗ + Tx∗ = x∗.

Proof. For each fixed y ∈ K, the map of X → X defined by

x→ Tx+ Sy,
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is contractive. Thus, there exists a unique x ∈ X such that x = Tx + Sy. By (iii) and
Lemma 1.3, we have x = (I − T )−1Sy := Ny ∈ K for each y ∈ K. Hence, we obtain
N(K) ⊂ K. Let x0 ∈ K and

A = {A : x0 ∈ A ⊂ K, A is a closed convex set and N(A) ⊂ A} .

Clearly, A 6= ∅ since K ∈ A. Moreover, for each A ∈ A we have that

(I − T )−1S(A) ⊂ T (I − T )−1S(A) + S(A) ⊂ T (A) + S(A).

This fact together with (iv) yields that ψ(N(A)) < ψ(A) for all A ∈ A with ψ(A) > 0.
Putting A0 =

⋂
A∈A

A and repeating the proof of Theorem 3.7 one obtains that A0 is a

nonempty weakly compact convex subset of K and N (A0) ⊂ A0. It follows from Lemma
1.3 that (I−T )−1 is continuous. Thus, it is easy to show that N is continuous and satisfies
(A1) on A0. Then Theorem 3.5 gives the desired result. �

The following results are consequences of Theorem 3.13. The proofs are more easier to be
shown due to Lemma 1.3, and Theorem 3.8.

Corollary 3.6. [30] Let K be a nonempty bounded convex convex subset of a Banach
space X. Suppose that S : K → X and T : X → X such that:

(i) S is ws-compact;

(ii) there exists γ ∈ [0,1) such that ψ(T (A) + S(A)) ≤ γψ(A) for all A ⊆ K. Here ψ is
an arbitrary measure of weak noncompactness on X;

(iii) T is a contraction;

(iv) (x = Tx+ Sy, y ∈ K) implies x ∈ K.

Then there is a x ∈ K such that Sx+ Tx = x.

Corollary 3.7. [30] Let K, T, S and (iii) be the same as Theorem 3.13. In addition,
assume that the following conditions are satisfied.

(i) T is a contraction with constant α ∈ [0,1) and satisfies (A2);

60



3. FIXED POINT THEOREMS UNDER WEAK TOPOLOGY USING MWNC

(ii) S(K) is relative weakly compact, S is continuous and fulfils (A1).

Then the conclusion of Theorem 3.13 holds.

Corollary 3.8. [30] Let K be the same as Theorem 3.13. Assume that S : K → K is
continuous and verifies the condition (A1). If S(K) is relatively weakly compact, then
there exists x∗ ∈ K such that Sx∗ = x∗.

3.3 Application

Consider the following variant of Hammerstein’s integral equation

x(t) = g(t, x(t)) + λ
∫ 1

0
κ(t, s)f(s, x(s))ds, (3.9)

in L1(0,1), the space of Lebesgue integrable functions on (0,1) with values in R. Here
f(·,·), g(·,·) and κ(·,·) are measurable functions and λ is a non-negative real parameter.

Let us mention that in general it is very difficult to express the measure ω with help of
a convenient formula in a concrete nonreflexive Banach space X as like in the case of the
Lebesgue space L1(0,1) [19]. But on the other hand in this space the following convenient
criterion of weak compactness is known [19]:

Theorem 3.14. A bounded set B in L1(0,1) is weakly sequentially compact if and only if

lim
meas(E)→0

E⊂(0,1)

∫
E
x(s)ds = 0,

uniformly with respect to x ∈ B.

Let us notice that the above theorem may be rewritten in the following equivalent form:

Theorem 3.15. [12] A bounded set B in L1(0,1) is weakly sequentially compact if and
only if

lim
ε→0

®
sup
ñ∫ b

a
|x(t)|dt : 0 6 a 6 b 6 1, b− a 6 ε

ô´
= 0,

uniformly with respect to x ∈ B.

The following definition and lemma give a characterization of ω(B) for any bounded
subset B of L1.
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Definition 3.2. Let B be a bounded subset of L1 (0,1). We call the following real number

π1(B) = lim
ε→0

®
sup
x∈K

®
sup
®∫ b

a
|x(t)|dt : 0 6 a 6 b 6 1, b− a 6 ε

´´´
,

the measure of nonequiabsolute continuity of B.

This formula was obtained by Appell and De Pascale [5].

Lemma 3.4. [23] Let B is a bounded subset of L1 (0,1) , then ω(B) = π1(B).

Recall that a function f : (0,1)× R→ R is said to be a Carathéodory function if

 t −→ f(t, x) is measurable on (0,1) for all x ∈ R,

x −→ f(t, x) is continuous on R for almost all t ∈ (0,1).

To every function x being measurable on (0,1), we may assign the function
(Nfx) (t) = f(t, x(t)), t ∈ (0,1). The operator Nf defined in such a way is called Nemytskii
operator or the superposition operator generated by the function f. The superposition
operator enjoys several nice properties. We recall the following results which states a basic
fact for the theory of these operators on L1 spaces.

Lemma 3.5. [30] Let f : (0,1)× R→ R be a Carathéodory function. Then the superpo-
sition operator Nf maps L1(0,1) into L1(0,1) if and only if there exist a constant b ≥ 0
and a function a(·) ∈ L1

+(0,1) such that

|f(t, x)| ≤ a(t) + b|x|,

where L1
+(0,1) denotes the positive cone of the space L1(0,1).

Remark 3.3. Under the conditions of Lemma 3.5 the operator Nf is obviously continuous
and maps bounded sets of L1(0,1) into bounded sets of L1(0,1).

Lemma 3.6. [30] Suppose f : (0,1)×R→ R is a Carathéodory function and Nf mapsL1(0,1)
into itself, then Nf satisfies (A2).

The problem (3.9) will be discussed under the following assumptions:
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(H1) there is a h > 1 such that for all x, y ∈ L1(0,1) and for all t ∈ (0,1) we have

|g(t, x(t))− g(t, y(t)| ≥ h|x(t)− y(t)|, (3.10)

(H2) for each x ∈ L1(0,1), g(·, x(·)) is integrable on (0,1) and for each t ∈ (0,1),
g(t,·) : L1(0,1)→ L1(0,1) is onto;

(H3) f : (0,1)×R→ R is a Carathéodory function and there exist a constant b > 0 and a
function a(·) ∈ L1

+(0,1) such that |f(t, x)| ≤ a(t) + b|x| for all t ∈ (0,1) and x ∈ R;

(H4) The function κ : (0,1)× (0,1)→ R is strongly measurable and
1∫

0

κ(·, s)x(s)ds ∈ L1(0,1) whenever x ∈ L1(0,1) and there exists a function

ρ : (0,1) → R belonging to L∞(0,1) such that |κ(t, s)| ≤ ρ(t) for all (t, s) ∈
(0,1)× (0,1);

(H5) h− 1− λ‖ρ‖b > 0.

The following theorem provides an existence result for equation (3.9).

Theorem 3.16. [30] Assume that the conditions (H1)-(H5) are satisfied. Then the
problem (3.9) has at least one solution in L1(0,1).

First, notice that the problem (3.9) may be written abstractly in the form:

x = Tx+ Sx, x ∈ L1(0,1),

where T is defined on L1(0,1) by (Tx)(t) = g(t, x(t)) − g(t, 0) for x ∈ L1(0,1) t ∈ (0,1).
The map S is defined for x ∈ L1(0,1) by

Sx = g(·, 0) +KNfx, (3.11)

where Nf is the superposition operator associated to f and K denotes the linear integral
operator defined by

K : L1(0,1)→ L1(0,1) : u(t) 7→ Ku(t) := λ
∫ 1

0
κ(t, s)u(s)ds.

Note that, for any x ∈ L1(0,1), the function Sx + Tx belongs to L1(0,1) which is a
consequence of the assumptions (H2), (H3) and (H4).
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Our strategy is to apply Theorem 3.11 to find a fixed point for the operator S + T in
L1. The proof will be broken up into several steps.
Claim 1: We first show that S is continuous. To see this, first notice that the assumption
(H3) and Lemma 3.5 guarantee that Nf maps continuously L1(0, 1) into itself. To complete
the proof it remains only to show that K is continuous, to this end; let u ∈ L1(0,1) from
the hypothesis (H4), we get

‖Ku‖L1 =
∫ 1

0
|Ku(t)|dt

=
∫ 1

0

∣∣∣∣∣λ
∫ 1

0
κ(t, s)u(s)ds

∣∣∣∣∣ dt
≤ |λ|

∫ 1

0

∫ 1

0
|κ(t, s)||u(s)|ds dt

≤ λ
∫ 1

0
ρ(t)

∫ 1

0
|u(s)|ds dt

≤ λ‖ρ‖L∞ meas((0,1))‖u‖L1

= λ‖ρ‖L∞‖u‖L1 ,

which give us that K is bounded linear operator; hence S is continuous.
Claim 2: We then illustrate that S verifies (A1). To see this, let (θn)n∈N be a weakly
convergent sequence of L1(0,1). Using Lemma 3.6 the sequence (Nf (θn))n∈N has a weakly
convergent subsequence, say (Nf (θnk

))k∈N. Let θ be the weak limit of (Nf (θnk
)). Accord-

ingly, keeping in mind the boundedness of the mapping κ(t,.) we get∫ 1

0
κ(t, s)f (s, θnk

(s)) ds→
∫ 1

0
κ(t, s)f(s, θ(s))ds.

The use of the dominated convergence Theorem S 1.13 allows us to conclude that the
sequence (Sθnk

) converges in L1(0,1).
Claim 3: We prove that S maps bounded sets of L1(0,1) into weakly compact sets.

To this end, let A be a bounded subset of L1(0,1) and let M > 0 such that ‖x‖L1 ≤M for
all x ∈ A. For x ∈ A we have

|(Sx)(t)| ≤ |g(t, 0)|+ λ
∫ 1

0
|κ(t, s)‖f(s, x(s)|ds

≤ |g(t, 0)|+ λ
∫ 1

0
|ρ(t)|(a(s) + b|x(s)|)ds

≤ |g(t, 0)|+ λρ(t)(‖a‖L1 + bM).
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Consequently, ∫
E
|(Sx)(t)|dt ≤

∫
E
|g(t, 0)| dt+ λ(‖a‖L1 + bM)

∫
E
|ρ(t)| dt,

for all measurable subsets E of (0,1). Taking into account the fact that any set consisting
of one element is weakly compact and using Theorem 3.14, we obtain

lim
meas(E)→0

∫
E
|ρ(t)|dt = 0 and lim

meas(E)→0

∫
E
|g(t, 0)|dt = 0.

Since S(A) is bounded, applying the sufficient condition of Theorem 3.14 we infer that the
set S(A) is sequentially weakly compact, and by Eberlein–Šmulian’s Theorem conclude
that S(A) is weakly compact.
Claim 4: We will examine that there is a r > 0 such that for all x ∈ L1(0,1) we have
(x = Tx+ Sy, y ∈ Br) that implies x ∈ Br. To perform this, put

r = ‖g(., 0)‖+ λ‖ρ‖‖a‖
h− 1− λ‖ρ‖b ,

and let x ∈ L1(0,1) and y ∈ Br such that x = Tx+ Sy. Then for all t ∈ (0,1) we have

x(t) = g(t, x(t)) + λ
∫ 1

0
κ(t, s)f(s, y(s))ds.

Thus,
x(t)− g(t, x(t)) + g(t, 0) = g(t, 0) + λ

∫ 1

0
κ(t, s)f(s, y(s))ds.

The use of condition (H1) give us

|x(t)− g(t, x(t)) + g(t, 0)| ≥ |g(t, x(t))− g(t, 0)| − |x(t)|

≥ (h− 1)|x(t)|.
(3.12)

Therefore,

(h− 1)|x(t)| ≤ |x(t)− g(t, x(t)) + g(t, 0)| ≤ |g(t, 0)|+ λ
∫ 1

0
|κ(t, s)‖f(s, y(s))|ds.

In view of our assumptions

|x(t)| ≤ 1
h− 1

Ç
|g(t, 0)|+ λ|ρ(t)|

∫ 1

0
(|a(s)|+ b|y(s)|)ds

å
.

Hence
|x(t)| ≤ 1

h− 1(|g(t, 0)|+ λ|ρ(t)|(‖a‖+ b‖y‖).
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By integration on (0,1) we get

‖x‖ ≤ 1
h− 1(‖g(., 0)‖+ λ‖ρ‖‖a‖+ λb‖ρ‖‖y‖).

As a consequence,

‖x‖ ≤ 1
h− 1(‖g(., 0)‖+ λ‖ρ‖‖a‖+ λb‖ρ‖r) = r.

Thus, x ∈ Br.
Claim 5: We shall illuminate that

ω((I − T )(M)) ≥ (h− 1)ω(M), (3.13)

for any bounded subset M of L1(0,1). This obviously implies that (I − T )−1 verifies (A2).
To do so, note first that for all x ∈ L1(0,1) and for all t ∈ (0,1) by (3.12) we have

(h− 1)|x(t)| ≤ |x(t)− Tx(t)|. (3.14)

Hence,
(h− 1)

∫
D
|x(t)|dt ≤

∫
D
|x(t)− Tx(t)|dt, (3.15)

for any subset D of L1(0,1). This leads to (3.13).
Claim 6: We shall prove that S (Br) ⊂ (I − T ) (L1(0,1)). To see this, let y ∈ L1(0,1) be
fixed. We define U : L1(0,1)→ L1(0,1) by

(Uyx) (t) = (Tx)(t) + y(t) = g(t, x(t))− g(t, 0) + y(t)

Then Uy is expansive with constant h. From Assumption (H2) it follows that Uy is onto. By
Lemma 1.6 we know there exists x∗ ∈ L1(0,1) such that Uyx∗ = x∗, that is (I − T )x∗ = y.
Hence S (Br) ⊂ L1(0,1) ⊂ (I − T ) (L1(0,1)).

Thus, the hypotheses of Theorem 3.11 are all fulfilled. This gives a fixed point for
S + T and hence an integrable solution to equation (3.9).

Example: Consider that following Hammerstein integral equation

x(t) = 1
t2 + 1 + 2x(t) +

∫ 1

0
e−(t+s)t

ï 1
s2 + 1 + s

2s+ 1x(s) sin(x(s))
ò

ds, (3.16)
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where t ∈ (0,1). It is easily seen that equation (3.16) is a particular case of equation (3.9)
where

κ(t, s) = e−(t+s)t,

and
f(t, x) = 1

t2 + 1 + t

2t+ 1x sin x,

and
g(t,x(t)) = 1

t2 + 1 + 2x(t).

Clearly, we have
|κ(t, s)| = |e−(t+s)t| ≤ t = ρ(t),

where ρ ∈ L∞(0,1) and since f is continuous in (0,1)×R, so it is a Carathéodory function,
and

|f(t, x)| = | 1
t2 + 1 + t

2t+ 1x sin x|

≤ | 1
t2 + 1 |+ |

t

2t+ 1x sin x|

≤ 1
t2 + 1︸ ︷︷ ︸
a(t)

+ 1
3︸︷︷︸
b

|x|.

Obviously, g satisfies the conditions (H1)-(H2) with constant h = 2, and

h− 1− ‖ρ‖b = 2− 1− 1
3 = 2

3 > 0.

Now, applying Theorem 3.16 we obtain that the equation 3.16 has at least one solution in
the space L1(0,1).
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Chapter 4
Fixed-Point Theorems for Block Operator
Matrix

In this chapter, we are interesting to show some fixed point theorems for a 2× 2 block
operator matrix with nonlinear entries (in short BOM) acting on a product of two Banach
spaces. We will prove some theorems by combining the results studied in Chapter 2,
Chapter 3 and some ideas in the book [23].

4.1 Schauder’s and Krasnoselskii’s Fixed Point The-

orems for BOM

LetM be a nonempty, bounded, closed, and convex subset of a Banach space X. We
consider the 2× 2 block operator matrix

L =

Ö
A B

C D

è
, (4.1)

in the spaceM×X that is, the operators

A, C :M−→ X,

B, D : X −→ X.

In this section, we impose some conditions on the entries to discuss the existence of fixed
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4. FIXED-POINT THEOREMS FOR BLOCK OPERATOR MATRIX

points for the block operator matrix (4.1). This discussion is based on the invertibility or
not of the diagonal terms of I − L. The study will be broken into three cases as follow:

The both of the diagonal entries of I − L is invertible

We assume that the entries of (4.1) fulfils :

(H1) The operator A fulfils the conditions of Lemma 2.1 or Lemma 2.3 (resp. the operator
D fulfils the conditions of Lemma 2.1 or Lemma 2.3) with the constant γA (resp.
with the constant γD );

(H2) The operator B is kB-Lipschitz and C is nonlinear contraction with the function φC ;

(H3) (I − A)−1B(I −D)−1C(M) is a subset ofM .

Theorem 4.1. Under the assumptions (H1)− (H3) , the block operator matrix(4.1) has,
at least, a fixed point inM×X provided that γA · γD · kB < 1.

Remark 4.1. We are going to show only the case when the both of A and D satisfy all
the conditions of Lemma 2.1, the other cases are similar.

Proof. Since D fulfils the conditions of Lemma 2.1 so, (I − D)−1 exists on X and
γD-Lipschitz. Using the condition (H2) we get

‖B(I −D)−1Cx−B(I −D)−1Cy‖ ≤ kB(‖(I −D)−1Cx− (I −D)−1Cy‖)

≤ kB · γD‖Cx− Cy‖

≤ kB · γD · φC(‖x− y‖)

≤ kB · γD‖x− y‖.

So, by the Lemma 2.2
S := B(I −D)−1C :M−→ X

is kB · γD-set contractive.

But A is also verifies all the conditions of Lemma 2.1 so, (I −A) is Lipschitz invertible
with the constant γA <

1
kB · γD

, and maps X onto X. And because S :M→ X, it follows
that for every y ∈M, there exists x ∈ X such that
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4. FIXED-POINT THEOREMS FOR BLOCK OPERATOR MATRIX

x− Ax = Sy ⇐⇒ (I − A)x = Sy

=⇒ x = (I − A)−1Sy,

now from (H3), x ∈M. So all the conditions of Theorem 2.6 are satisfy which means that
there exists x0 ∈M such that

Ax0 + Sx0 = x0 ⇔ (I − A)−1Sx0 = x0

⇔ (I − A)−1B(I −D)−1Cx0 = x0.

Let y0 := (I −D)−1Cx0, hence; Ax0 +By0 = x0

Cx0 +Dy0 = y0
⇒ L

Ö
x0

y0

è
=

Ö
x0

y0

è
.

�

Notation: We denote by Υ(A,B,C,D)
M the following set:

Υ(A,B,C,D)
M =

¶
x ∈M such that x = Ax+B(I −D)−1Cy; for some y ∈M

©
.

Theorem 4.2. LetM be a nonempty,bounded, convex and closed subset of a Banach
space X. Assume that A,C :M−→ X, and B,D : X −→ X are four operators satisfying
the following conditions:

(H4) (I − A) is one-to-one;

(H5) A is α-condensing with sequentially closed graph in Υ(A,B,C,D)
M ;

(H6) (I −D) is continuously invertible on C(M);

(H7) B and C are continuous mappings with C(M) is relatively compact;

(H8) B(I −D)−1C(M) ⊂ (I − A)(M).

Then the BOM (4.1) has at least one solution inM×X.

Proof. Since (I −D) is continuously invertible, the operator

S =: B(I −D)−1C :M→ X,
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4. FIXED-POINT THEOREMS FOR BLOCK OPERATOR MATRIX

is continuous. Let now Ω be a nonempty subset ofM with α(Ω) > 0. By the subadditivity
of the Kuratowski’s measure of noncompactness, the first part of (H5) and the last part of
(H7) we get

α
Ä
AΩ +B(I −D)−1CΩ

ä
≤ α(AΩ) + α

Ä
B(I −D)−1CΩ

ä
< α(Ω).

Which means that the second condition (ii) of Theorem 2.7 is hold. Obviously the other
conditions of Theorem 2.7 are satisfying, then BOM (4.1) has at least one solution in
M×X. �

Just one of the diagonal entries of I − L is invertible

We shall treat only the case of invertibility of I −D, the other case is similar just simply
exchanging the roles of D and A and C and B. Assume that:

(H9) The operator D fulfils the conditions of Lemma 2.1 with the constant γD;

(H10) B is nonlinear contraction with the functions φB;

(H11) C is contraction with the constant kC < γ−1
D ;

(H12) A is a continuous compact operator;

(H13) (A+B(I −D)−1C)(M) is a subset ofM.

Theorem 4.3. Under the assumptions (H9)− (H13) , the BOM (4.1) has, at least, a fixed
point inM×X.

Proof. We only have to prove that the map

Γ := A+B(I −D)−1C :M−→M,

is condensing with respect to α. (The continuity of Γ is obvious.)
Using the ideas used to prove Theorem 4.1, one easily derive that S := B(I −D)−1C is a
kC · γD-set contractive.
Let now Ω be a nonempty subset of M with α(Ω) > 0. By the subadditivity of the
Kuratowski’s measure of noncompactness, we get
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α(ΓΩ) ≤ α
Ä
AΩ +B(I −D)−1CΩ

ä
≤ α(AΩ) + α

Ä
B(I −D)−1CΩ

ä
< α(Ω).

This latter inequality means that Γ is a condensing map with respect to α, and Sadoveskii’s
fixed point theorem works. �

None of the diagonal entries of (I − L) is invertible

In this case, we discuss the existence of fixed points for the following perturbed block
operator matrix by laying down some conditions on the entries.‹L =

Ö
A1 B

C D1

è
+

Ö
P1 0
0 P2

è
. (4.2)

LetM′ be a nonempty, bounded, closed, and convex subset of a Banach space Y .
Assume that the operators A1 and P1 map X into X, B fromM′ into X, C fromM

into Y, and D1 and P2 from Y into itself. Suppose that the operator (4.2) respects the
following assumptions:

(H14) A1 fulfils the conditions of Lemma 2.1 (resp. the operator D1 fulfils the conditions
of Lemma 2.1) with the constant γA1 (resp. with the constant γD1),

(H15) the operators P1, P2, B and C are kP1-Lipschitz, kP2-Lipschitz, kB-Lipschitz, kC-
Lipschitz respectively,

(H16) For every x1 ∈ X, x2 ∈M and y1 ∈ Y, y2 ∈M′, (I−A1)−1P1x1+(I−A1)−1By2 ∈M
and (I −D1)−1Cx2 + (I −D1)−1P2y1 ∈M′.

Theorem 4.4. Under the above assumptions (H14)− (H16) , the block operator matrix
(4.2) has, at least, a fixed point inM×M′ provided that

max
®
kP1 · γA1 , kP2 · γD1,

γA · kB
1− γA · kP1

,
γD · kC

1− γD · kP2

´
< 1.

To prove this theorem we need the following theorem which is define a MNC in
Cartesian product X = X1 ×X2 × . . .×Xn based on its MNCs µ1, µ2, . . . , µn respectively.
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Theorem 4.5. [9] Assume the function F : ]0,+∞)n →]0,+∞) is convex and
F (x1,x2, · · · , xn) = 0 if and only if xi = 0 for i = 1, 2, . . . , n. Then

µ(B) = F
Ä
µ1
Ä
B1ä , µ2

Ä
B2ä , . . . , µn (Bn)

ä
∀B ∈ BX ,

defines the measure of noncompactness in X = X1 ×X2 × . . .×Xn.
Here Bi denotes the natural projection of B into Xi.

Corollary 4.1. The function

F (B) := max{µ1
Ä
B1ä , µ2

Ä
B2ä , . . . , µn (Bn)} ∀B ∈ BX ,

defines a MNC in Cartesian product X = X1 ×X2 × . . .×Xn.

Now we are ready to prove Theorem 4.4.

Proof. Let us consider the following matrix equationÖ
A1 + P1 B

C D1 + P2

èÖ
x

y

è
=

Ö
x

y

è
. (4.3)

This latter is equivalent toÖ
P1 B

C P2

èÖ
x

y

è
=

Ö
I − A1 0

0 I −D1

èÖ
x

y

è
.

By using the assumption (H14) we deduce that the right block matrix above is invertible andÖ
(I − A1)−1 0

0 (I −D1)−1

èÖ
P1 B

C P2

èÖ
x

y

è
=

Ö
x

y

è
,

or, equivalently Ö
(I − A1)−1 P1 (I − A1)−1B

(I −D1)−1C (I −D1)−1 P2

èÖ
x

y

è
=

Ö
x

y

è
.

Hence, this latter may be transformed into

T

Ö
x

y

è
+ S

Ö
x

y

è
=

Ö
x

y

è
,
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where

T =

Ö
(I − A1)−1 P1 0

0 (I −D1)−1 P2

è
and

S =

Ö
0 (I − A1)−1B

(I −D1)−1C 0

è
.

In one hand, we have
max {kP1 · γA1 , kP2 · γD1, } < 1

it give us that the both operators (I − A1)−1 P1 and (I −D1)−1 P2 are contractions, so;
(I − T )−1 exists inX×Y and Lipschitz with the constantm∗ = max

® 1
1− γA · kP1

,
1

1− γD · kP2

´
.

In the other hand, S is m−1
∗ -set contractive with respect to the measure of non compactness

α(·) = max{αX(.),αY (.)}.
Using the condition (H16) we see that all the conditions of Theorem 2.6 are satisfy, hence,
the block operator matrix (4.2) has at least one fixed point. �

4.2 Schauder’s and Krasnoselskii’s Fixed Point The-

orems for BOM under Weak Topology

In this section, we will use the results studied in Chapter 3 in order to develop a general
matrix fixed point theory under weak topology.

Theorem 4.6. LetM be a nonempty, bounded, convex and closed subset of a Banach
space X. Assume that A,C :M−→ X, and B,D : X −→ X are four operators satisfying
the following conditions:

(i) (I −D) is weak sequential continuous invertible;

(ii) B and C are sequentially weakly continuous, in addition the operator B(I −D)−1C

is k-contractive, k > 0;

(iii) A is φ-nonlinear contraction with φ(r) < (1− k)r, sequentially weakly continuous in
Υ(A,B,C,D)
M and satisfies the condition A2;
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(iv) B(I −D)−1C(M) ⊂ (I − A)(M).

Then BOM (4.1) has at lest one fixed point.

Proof. Using (i) and the first part of (ii) we deduce that

B(I −D)−1C :M→ X

is weakly sequentially continuous. The fact that A is φ-nonlinear contraction by Lemma
1.5, (I − A) is a surjective operator and invertible, so the first and part of condition (i)
and condition (ii) in Theorem 3.8 hold. We next claim that (I − A)−1B(I − D)−1C is
ω-weakly condensing. Indeed, we have the equality

(I − A)−1B(I −D)−1C = (I − A+ A)(I − A)−1B(I −D)−1C

= B(I −D)−1C + A(I − A)−1B(I −D)−1C,
(4.4)

let Ω a bounded subset ofM, keeping in mind the first and the second part of (iii), and
using the condition (ii) and Lemmas 3.1 and 3.2 we obtain

ω((I − A)−1B(I −D)−1C(Ω)) ≤ ω(B(I −D)−1C(Ω)) + ω(A(I − A)−1B(I −D)−1C(Ω))

≤ kω(Ω) + φ(ω((I − A)−1B(I −D)−1C(Ω)))

< kω(Ω) + (1− k)ω((I − A)−1B(I −D)−1C(Ω)).

This shown that, (I −A)−1B(I −D)−1C is ω-weakly condensing. Now the use of Theorem
3.8 achieves the proof. �

Corollary 4.2. LetM be a nonempty, bounded, convex and closed subset of a Banach
space X. Assume that A,C :M−→ X, and B,D : X −→ X are four operators satisfying
the following conditions:

(i) (I −D) is weakly sequentially continuous invertible;

(ii) B and C are sequentially weakly continuous;

(iii) A is φ-nonlinear contraction and sequentially weakly continuous in Υ(A,B,C,D)
M ;

(iv) the set Υ(A,B,C,D)
M is relatively weakly compact;
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Then BOM (4.1) has at lest one fixed point.

Proof. Let z ∈ B(I −D)−1C(M), and we define the map Az : X → X by Azx = Ax+ z.
We claim that Az has a unique fixed point in X. Keeping in the mind that A is φ-nonlinear
contraction, and we have

‖Azx− Azy‖ = ‖Ax+ z − Ay + z‖

≤ φ(‖Ax− Ay‖).

Which means that Az is φ-nonlinear contraction and by Boyd and Wong Theorem 1.4, it
has a unique fixed point.
By the second part of (iii) and (iv), together with Lemma 3.3 we conclude that
B(I−D)−1C :M→ X is weakly compact operator and B(I−D)−1C(M) ⊂ (I−A)(M).
Now, we claim that (I − A)−1B(I − D)−1C is weakly compact. If this is not the case,
then d = ω((I − A)−1B(I −D)−1C(Ω)) > 0, ∀ Ω ∈ BM. The use of (4.4) yields

ω((I − A)−1B(I −D)−1C(Ω)) ≤ ω(B(I −D)−1C(Ω))︸ ︷︷ ︸
=0

+ω(A(I − A)−1B(I −D)−1C(Ω))

≤ φ(ω((I − A)−1B(I −D)−1C(Ω)))

< ω((I − A)−1B(I −D)−1C(Ω)).

which is a contradiction and consequently ω((I−A)−1B(I−D)−1C(Ω)) is relatively weakly
compact whenever Ω is a bounded subset in BM, that means (I − A)−1B(I −D)−1C is
weakly compact operator in the other words is 0-contractive, hence, Theorem 4.6 works.

�

Theorem 4.7. [22] LetM be a nonempty, bounded, convex and closed subset of a Banach
space X. Assume that A,C :M−→ X, and B,D : X −→ X are four weakly sequentially
continuous operators satisfying the following conditions:

(i) C is weakly compact operator;

(i) D is a φ-nonlinear contraction and (I −D)−1C(M) is bounded;

(iii) A is k-contraction, and;

(iv) Ax+B(I −D)−1Cx ∈M for all x ∈M.
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Then BOM (4.1) has at lest one fixed point inM×X .

Proof. Since D is φ-nonlinear contraction, by Lemma 1.5 (I −D)−1 exists on X.
Now, we claim that (I −D)−1C(M) is relatively weakly compact. The use of

(I −D)−1C = C +D(I −D)−1C, (4.5)

and also the weak compactness of C(M)w yields

ω
Ä
(I −D)−1C(M)

ä
≤ ω

Ä
D(I −D)−1C(M)

ä
.

Let ε > ω ((I −D)−1C(M)) . By using the definition of ω, there are 0 ≤ ε0 < ε and a set
K ∈ WX ofM such that

D(I −D)−1C(M) ⊆ D(K) + Bφ(ε0).

Taking into account that D is weakly sequential continuous and using the Eberlein-
Šmulian’s theorem, we infer that D(K) is a relatively weakly compact subset of X and

ω
Ä
D(I −D)−1C(M)

ä
< φ(ε0) < φ(ε)

Letting ε→ ω ((I −D)−1C(M)) , we obtain

ω
Ä
(I −D)−1C(M)

ä
≤ ω

Ä
D(I −D)−1C(M)

ä
≤ φ(ω

Ä
(I −D)−1C(M)

ä
)

< ω
Ä
(I −D)−1C(M)

ä
,

which is a contradiction and consequently (I −D)−1C is weakly compact.
Next, let us show that the mapping F :M−→ X defined by the formula

F (x) = Ax+B(I −D)−1Cx,

is weakly sequentially continuous. To do so, let (ξn)n be a sequence inM which converges
weakly to ξ. Since (I−D)−1C(M) is relatively weakly compact, there exists a subsequence
(ξnk

) of (ξn) such that (I − D)−1C (ξnk
) ⇀ γ. Taking into account the weak sequential

continuity of the maps C and D and using the equality (4.5), to obtain γ = (I−D)−1C(ξ).
Thus,

(I −D)−1C (ξnk
) ⇀ (I −D)−1C(ξ).
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Now, we show that
(I −D)−1C (ξn) ⇀ (I −D)−1C(ξ).

Suppose the contrary, then there exists a weak neighbourhood V w of (I −D)−1C(ξ) and
a subsequence

Ä
ξnj

ä
of (ξn) such that (I − D)−1C

Ä
ξnj

ä
/∈ V w for all j ≥ 1, since

Ä
ξnj

ä
converges weakly to ξ, and arguing as before, we find a subsequence

Ä
ξnjk

ä
of
Ä
ξnj

ä
such

that (I −D)−1C
Ä
ξnjk

ä
⇀ (I −D)−1C(ξ). Which is absurd, since (I −D)−1C

Ä
ξnjk

ä
/∈ V w.

As a result, (I −D)−1C is weakly sequentially continuous.
We only have to show that the operator F is a weakly condensing operator with respect to
ω. Indeed, let Ω be a subset ofM with ω(Ω) > 0. From the above discussion, it is easy to
see that F (Ω) is a bounded subset ofM. Besides, since A and B are weakly sequentially
continuous, it follows that

ω(F (Ω)) ≤ ω
î
A(Ω) +B(I −D)−1C(Ω)

ó
≤ ω(A(Ω)) + ω

Ä
B(I −D)−1C(Ω)

ä
≤ k(ω(Ω)).

This inequality means that is F is weakly condensing with respect to ω. Hence, F has, at
least, one fixed point x inM in view of Theorem 3.7. �

Theorem 4.8. LetM be a nonempty, bounded, convex and closed subset of a Banach
space X. Assume that A, C :M−→ X, and B, D : X −→ X are four operators satisfying
the following conditions:

(i) D is expansive mapping with the constant h > 1, and C(M) ⊂ (I −D)(M);

(ii) C is sequentially weakly-strongly continuous and B is weakly sequentially continuous;

(iii) B and C are Lipschitzian with Lipschitz constants kB and kC respectively, such that
kB.kC < h− 1;

(iv) A is weakly compact operator, and sequentially weakly continuous;

(v) Ax+B(I −D)−1Cx ∈M, for all x ∈M.

Then BOM (4.1) has at lest one fixed point inM×M.
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Proof. Since D is expansive, the inverse operator (I−D)−1 exists on (I−D)(X) and, for
all x, y ∈ (I −D)(X), and (I −D)−1 is 1

h−1 -Lipschitz. Moreover the use of (ii) give us that
B(I −D)−1C is sequentially weakly continuous, and by (iii) this latter is contractive.Thus,
B(I−D)−1C(M) is bounded. Now, let Ω a bounded subset ofM, using the subadditivity
of ω and Lemma 3.1 we obtain

ω((AΩ +B(I −D)−1C(Ω)) ≤ ω(B(I −D)−1C(Ω)) + ω(A(Ω))

≤ kB · kC
h− 1 ω(Ω).

Now, Theorem 3.7 completes the proof. �

4.3 Application

Let X be a Banach space. Consider the following system of nonlinear integral equations
occurring in some biological problems, and also in ones dealing with physics:

x(t) = f(t, x(t)) +
ñÇ∫ σ1(t)

0
κ(t, s)f1(s, y(η(s)))ds

å
· u
ô
,

y(t) =
ñÇ
q(t) +

∫ σ2(t)

0
p(t, s, x(s), x(λs))ds

å
· v
ô

+ g(t, y(t)).
(4.6)

where u ∈ X\{0} and v ∈ X\{0}. We will seek the solutions of the system (4.6) in the
space C(J,X) of all continuous functions on J = [0, T ], 0 < T < ∞ endowed with the
norm ‖ · ‖∞. Looking that, we can rewrite th equation (4.6) in the following form

x(t) = Ax(t) +By(t),

y(t) = Cx(t) +Dy(t);

where 

(Ax)(t) = f(t, x(t)), t ∈ J ;

(Bx) (t) =

Ö
σ1(t)∫
0

k(t, s)f1(s, x(η(s)))ds

è
· u; t ∈ J and u ∈ X\{0};

(Cx)(t) =

Ö
q(t) +

σ2(t)∫
0

p(t, s, x(s))ds

è
· v

where t ∈ J, 0 < λ < 1, v ∈ X\{0}, and
(Dx)(t) = g(t, x(t)), t ∈ J

(4.7)
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Let us assume that the functions involved in Eq.(4.6) satisfy the following assumptions:

(H1) κ : J × J → R is nonnegative and continuous function.

(H2) σ1, σ2, η : J −→ J are continuous,

(H3) q : J −→ R is continuous,

(H4) The function p : J × J ×X ×X −→ R is weakly sequentially continuous such that,
for an arbitrary fixed s ∈ J and x, y ∈ X, the partial function t −→ p(t, s, x, y) is
continuous.

(H5) The mapping f : J ×X −→ X is such that:

(a) f is weakly sequentially continuous, and

(b) f is a contraction operator with a constant k′.

(H6) The function f1 : J ×X −→ R is such that:

(a) f1 is weakly sequentially continuous with respect to the second variable, and

(b) ‖f1(·, x(·))‖ ≤ λr, if ‖x‖∞ ≤ r, for r > 0.

(H7) The function g : J ×X −→ X is such that:

(a) g is weakly sequentially continuous with respect to the second variable,

(b) g is a Φ-nonlinear contraction with respect to the second variable, and

(c) Φ(r) < (1− λ)r, for all r > 0.

Theorem 4.9. [23] Suppose that the assumptions (H1)− (H7) are satisfied. Moreover,
assume that there exists a real number r0 > 0 such that

|p(t, s, x(s), x(λs))| ≤ r0, for x ∈ C(J,X) such that ‖x‖∞ ≤ r0, and
‖f(t, x(t))‖ ≤ k′‖x(t)‖, for t ∈ J and x ∈ C(J,X) such that ‖x‖∞ ≤ r0 .
‖g(·, x(.))‖ ≤ λ‖x‖∞, for x ∈ C(J,X) such that ‖x‖∞ ≤ r0 .
δ ≤ (1−k′)r0

KTλ‖u‖∞ , with u ∈ X\{0},
where K = sup

t,s∈J
κ(t, s), λδ = (‖q‖∞ + Tr0) ‖v‖∞ + r0, and v ∈ X\{0}.

(4.8)

Then, the nonlinear system (4.6) has at least, one solution in C(J,X)× C(J,X).
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Proof. LetM be the closed ball Br0 on C(J,X) with r0 > 0. In order to apply Theorem
4.7, we have to verify the following steps.
Claim 1: (I −D)−1C(M) is bounded. Indeed, since D is a Φ-nonlinear contraction, then
the inverse operator (I −D)−1 is well-defined on C(J,X). Let (x, y) ∈ M× C(J,X) be
such that y = (I −D)−1Cx. Then, for all t ∈ J, we have

y(t) =
Ç
q(t) +

∫ σ2(t)

0
p(t, s, x(s), x(λs))ds

å
· v + g(t, y(t)).

since y ∈ C(J,X) then, there is t∗ ∈ J such that

‖y‖∞ = ‖y (t∗)‖

≤
∣∣∣∣∣q (t∗) +

∫ σ2(t∗)

0
p (t∗, s, x(s), x(λs)) ds

∣∣∣∣∣ ‖v‖
+ ‖g (t∗, y (t∗))− g (t∗, x (t∗))‖+ ‖g (t∗, x (t∗) ‖

≤ (‖q‖∞ + Tr0) ‖v‖+ (1− λ)(‖y (t∗)‖+ ‖x (t∗)‖) + λ‖x‖∞

< (‖q‖∞ + Tr0) ‖v‖+ (1− λ) ‖y (t∗)‖+ ‖x‖∞

≤ (‖q‖∞ + Tr0) ‖v‖+ r0 + (1− λ)‖y‖∞.

Consequently,
‖y‖∞ < δ,

where
δ = 1

λ
[(‖q‖∞ + Tr0) ‖v‖+ r0] .

Hence, (I −D)−1C(M) is bounded with a bound δ which end the first claim. It should
be noted that the operators defined in (4.8) are well-defined. Indeed, the maps Ax and
Dy are continuous on J in view of assumptions (H5) (b) and (H7) (b), for all
(x, y) ∈M× C(J,X). Now, we claim that the two maps Cx and By are continuous on J
for all (x, y) ∈M× (I −D)−1C(M). To see this, let {tn} be any sequence in J converging
to a point t in J. Then

‖(By) (tn)− (By) (t)‖ ≤
ñ∫ σ1(tn)

0
|κ (tn, s)− κ(t, s)| |f1(s, y(η(s)))| ds

ô
‖u‖

+
∣∣∣∣∣
∫ σ1(t)

σ1(tn)
κ(t, s)f1(s, y(η(s)))ds

∣∣∣∣∣ ‖u‖.
Moreover, taking into account that (I −D)−1C(M) is bounded with a bound δ, and using
the assumption (H6) (b), we get
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‖(By) (tn)− (By) (t)‖ ≤
ñ∫ T

0
|κ (tn, s)− κ(t, s)|λδds

ô
‖u‖+

ñ
|
∫ σ1(t)

σ1(tn)
Kλδds|

ô
‖u‖

≤
ñ∫ T

0
|κ(tn, s)− κ(t, s)| ds+K |σ1 (tn)− σ1(t)|

ô
λδ‖u‖.

The continuity of κ and σ1 on [0, T ] implies that the function By is continuous. And we
have,

‖(Cx)(tn)− (Cx)(t)‖ ≤

∣∣∣∣∣∣∣
q(tn) +

σ2(tn)∫
0

p(tn,s,x(s),x(λs))ds− q(t)−
σ2(t)∫
0

p(t,s,x(s),x(λs))ds


∣∣∣∣∣∣∣ ‖v‖

≤

 σ2(tn)∫
0

|p(tn,s,x(s),x(λs))− p(t,s,x(s),x(λs))| ds

 ‖v‖
+

∣∣∣∣∣∣∣
σ2(tn)∫
σ2(t)

|p(t,s,x(s),x(λs))| ds

∣∣∣∣∣∣∣ ‖v‖+ |q(tn)− q(t)|‖v‖

≤

 T∫
0

|p(tn,s,x(s),x(λs))− p(t,s,x(s),x(λs))| ds
 ‖v‖

+ (r0 |σ2(tn)− σ2(t)|+ |q(tn)− q(t)|)‖v‖.

Since tn → t, so, (tn,s,x(s),x(λs))→ (t,s,x(s),x(λs)), for all s ∈ J . Taking into account
(H4) the hypothesis, we obtain

p(tn,s,x(s),x(λs))→ p(t,s,x(s),x(λs)) in R.

Moreover, the use of the first inequality in (4.8) leads to

|p(tn,s,x(s),x(λs)− p(t,s,x(s),x(λs)| ≤ 2r0,

for all t,s ∈ J, λ ∈ (0, 1). Consider ϕ : J → R

s → ϕ(s) = 2r0.

Clearly ϕ ∈ L1(J). Therefore, from the dominated convergence Theorem S 1.13 and
assumption (H2)− (H3), we obtain

(Cx)(tn)→ (Cx)(t) in X.
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It follows that Cx ∈ C(J,X).
Claim 2: In the proof of Theorem 4.7 we need to show that B is weakly sequentially
continuous on (I −D)−1C(M) and A and C are weakly sequentially continuous onM.

We begin to show the property for the operator B. Let {xn}∞n=0 be a weakly convergent
sequence of (I −D)−1C(M) to a point x. Since (I −D)−1C(M) is bounded, we can apply
the Dobrakov’s theorem 1.7 in order to get

xn(t) ⇀ x(t) in X.

The use of assumption (H6) and the Dobrakov’s theorem 1.7 allows us we obtain

f1 (t, xn(t)) ⇀ f1(t, x(t)) in R.

Which implies that

κ(t, s)f1 (t, xn(t)) ⇀ κ(t, s)f1(t, x(t)) in R.

Moreover, the use of the condition (b) H6, the boundedness of κ the, and dominated
convergence Theorem W 1.14 leads to

lim
n→∞

∫ σ1(t)

0
κ(t, s)f1 (s, xn(η(s))) ds =

∫ σ1(t)

0
κ(t, s)f1(s, x(η(s)))ds.

Hence,
(Bxn)(t) ⇀ (Bx)(t)

Since (Bxn)n is bounded by TKλδ‖u‖, then by using Dobrakov’s Theorem 1.7, we get
that Bxn ⇀ Bx and so B is weakly sequentially continuous on (I−D)−1C(M). Therefore,
since g is weakly sequentially continuous with respect to the second variable and by the
third inequality in (4.8) g (·, xn) is bounded, then the operator D defined in (4.7) is also
weakly sequentially continuous. Moreover, taking into account thatM is bounded and
using the Dobrakov’s theorem 1.7 we show that A is a weakly sequentially continuous
operator onM.

Now, we show that C is weakly sequentially continuous onM. To see this, let {xn}∞n=0 be
any sequence inM weakly converging to a point x ∈M. Then by using the Dobrakov’s
Theorem 1.7, we get for all t ∈ J, xn(t) ⇀ x(t). Then, by assumption (H4) and the
dominated convergence Theorem W 1.14, we obtain

(Cxn) (t) ⇀ (Cx)(t) in X.
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Thus, Cxn ⇀ Cx. As a result, C is weakly sequentially continuous onM.

Claim 3: Next, let us show that C is weakly compact and that A is condensing onM.
We should prove that C(M) is relatively weakly compact. By definition, we have

for all t ∈ J, C(M)(t) = {(Cx)(t); ‖x‖∞ ≤ r0} .

Then, C(M)(t) is sequentially relatively weakly compact in X. To see this, let {xn}∞n=0 be
any sequence inM, we have (Cxn) (t) = rn(t) · v, where

rn(t) = q(t) +
∫ σ2(t)

0
p (t, s, xn(s), xn(λs)) ds,

since |rn(t)| ≤ ‖q‖∞+Tr0 in view of the first inequality in (4.8), it follows that that {rn} is
a uniformly bounded sequence in C(J,R). Next, we show that {rn(t)} is an equicontinuous
set. Let t1, t2 ∈ J. Then, we have

|rn (t1)− rn (t2)| ≤ |q (t1)− q (t2)|+
∣∣∣∣∣
∫ σ2(t2)

σ2(t1)
|p (t2, s, x(s), x(λs)) |ds

∣∣∣∣∣
+
∣∣∣∣∣
∫ σ2(t1)

0
|p (t1, s, x(s), x(λs))− p (t2, s, x(s), x(λs)) |ds

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0
|p (t1, s, x(s), x(λs))− p (t2, s, x(s), x(λs)) |ds

∣∣∣∣∣
+ |q (t1)− q (t2)|+ r0 |σ2 (t1)− σ2 (t2)| ,

since p, q, and σ2 are uniformly continuous functions, we conclude that {rn} is an equicon-
tinuous set, thus by Arzelà-Ascoli’s Theorem S 1.8, {rn} is a compact set. As a result,
C(M)(t) is sequentially relatively weakly compact. Next, we will show that C(M) is a
weakly equi-continuous set. If we take ε > 0, x ∈ M, x∗ ∈ X∗ and t, t′ ∈ J such that
t ≤ t′, t′ − t ≤ ε, and using the first inequality in (4.8) we obtain

‖ x∗((Cx)(t)− (Cx)(t′)) ‖ ≤
ñ∫ σ2(t)

0
|p(t, s, x(s), x(λs))− p (t′, s, x(s), x(λs))| ds

ô
‖x∗(v)‖

+ |q(t)− q (t′)| ‖x∗(v)‖+
ñ∫ σ2(t′)

σ2(t)
|p (t′, s, x(s), x(λs))| ds

ô
‖x∗(v)‖

≤ (w(q, ε) + Tw(p, ε) + r0w (σ2, ε)) ‖x∗(v)‖,
where 

w(q, ε) = sup {|q(t)− q (t′)| : t, t′ ∈ J ; |t− t′| ≤ ε} ,
w(p, ε) = sup

t,t′,s∈J,
x,y∈M

{|p(t, s, x, y)− p (t′, s, x, y)| : |t− t′| ≤ ε} , and

w (σ2, ε) = sup {|σ2(t)− σ2 (t′)| : t, t′ ∈ J ; |t− t′| ≤ ε} .
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By taking into account the assumption (H4), and in view of the uniform continuity of the
functions q and σ on the set J, it follows that w(q, ε)→ 0, w(p, ε)→ 0 and w (σ2, ε)→ 0 as
ε→ 0. By applying Arzelà-Ascoli’s Theorem W 1.9 we conclude that C (M) is sequentially
weakly relatively compact in X, Again, an application of Eberlein-Šmulian’s theorem
implies that C (M) is relatively weakly compact. As a result, C is weakly compact. Now,
the use of the assumption (H5) and Lemma 3.1 allows us to deduce that the operator A is
weakly condensing.
Claim 4: To finish, it is sufficient to show that

Ax+B(I −D)−1Cx ∈M for all x ∈M.

Let y ∈ C(J,X) be arbitrary, with

y = Ax+B(I −D)−1Cx,

for some x ∈M. Then, for all t ∈ J, we have

‖y(t)‖ ≤ ‖(Ax)(t)‖+
∥∥∥B(I −D)−1Cx(t)

∥∥∥ .
We should notice that, for all x ∈ (I − D)−1C (M) , there exists a unique z ∈ C(J,X)
such that z = x, with ‖z‖ ≤ δ. Therefore

‖y(t)‖ ≤ ‖f(t, x(t))‖+
∥∥∥∥∥
Ç∫ σ1(t)

0
κ(t, s)f1(s, z(η(s)))ds

å
· u
∥∥∥∥∥

≤ k′‖x(t)‖+
Ç∫ T

0
|κ(t, s)λ‖z(η(s))‖ds

å
‖u‖∞

≤ k′r0 + λKTδ‖u‖∞.

where
K = sup

t,s∈J
|κ(t, s)|,

since y ∈ C(J,X), there is t∗ ∈ J such that ‖y‖∞ = ‖y (t∗)‖ and so, ‖y‖∞ ≤ r0 in view of
the last inequality in (4.8). Hence, the hypothesis (iii) of Theorem 4.7 is satisfied, which
achieves the proof. �
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Conclusion and perspective

The fixed point theory plays an important role to proof the existence of solutions of
different types of equations.

The work presented in this Master thesis focused on the study several extensions of
Schauder and Krasnoselskii fixed point theorems in Banach spaces endowed with its strong
and weak topologies in the context that the involved operators are not (weakly) compact,
invoking the technique of measures of (weak) noncompactness.

Besides that, under which conditions we also study some theorems which unsure the
existence of fixed points for a 2× 2 block operator matrix. In addition, this memoir gives
three applications of fixed point theorems in previous cases.

Consequently, in the direct continuity of our work, in the near future, we aim at
investigating the fixed point theorems of Krasnoselskii in Fréchet spaces under its weak
topology by using the family of measures of (weak) noncompactness - which is used the
first time by Olszowy [26]- and show some applications.
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ملخص
بناخي فضاء في كراسنسلسكي و لشودر الصامدة النقطة يات نظر تعميمات بعض دراسة هو المذكرة هذه من الهدف
تطرقنا كما التراص، لعدم الضعيف القياس و التراص عدم قياس تقنيتي باستخدام الضعيفة، بطوبولوجيته أو بنظيم المزود
لبعض حلول وجود لاثبات يات النظر هذه بعض استخدمنا قد و لتابعين، 2×2 مصفوفة لكتلة الصامدة النقط دراسة الى

خطية. الغير التكاملية المعادلات
,k)-مجموعة µ) التوابع التراص، لعدم الضعيف القياس التراص، عدم قياس الصامدة، النقطة ية نظر المفتاحية. الكلمات
مصفوفة كتلة خطية، الغير التكاملية المعادلة متتالي، ضعيف بشكل مستمر التمددية، التوابع التكثيفية، التوابع التقلصية،

لتابعين.

Abstract
The propose of this memoir is to study some generalisation versions of fixed point theorem

of Schauder and Krasnoselskii on Banach spaces and product of two Banach spaces furnished
with its norm and weak topology by using the most useful technique of Measure of (Weak)
Noncompactness. Besides that we applicate this results to find a solution for nonlinear integ-
ral equations.
Key words. Fixed point theorem, Measure of (Weak) Noncompactness, (k, µ)-set contrac-
tion mapping, Condensing mapping, Expansive mapping, Sequentially weakly continuous,
Nonlinear integral equation, Block Operator Matrix.

Résumé
Le but de ce mémoire est d’étudier quelque généralisation des théorèmes de point fixe de

Schauder et Krasnoselskii dans des espaces de Banach et produit de deux espaces de Banach
munis de leurs topologies forts et faibles, par l’usage des techniques de la mesure de non-
compacité et mesure de non-compacité faible. Ensuite on applique ces théorèmes pour prou-
ver des résultats d’existence de solutions pour certaines équations intégrales non linéaires.
Mots clés.Theoremde point fixe, Mesure de non-compacité (faible), Application (k, µ)-ensemble
contractive, Application condensante, Application expansive, sequentiellement faiblement conti-
nue, équation intégral non linéaire, Bloc des opérateurs matrices.
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