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Abstract

The aim of this memoir is first to study new version of Krasnoselskii fixed point
theorems under weak topology of Banach spaces then to provide as applications some
existence results for some nonlinear integral equation.

This work is divided into fours chapters. The first chapter provides some definitions
and auxiliary results that will be used later on.

In Chapter 2, we give an exposition of Krasnoselskii fixed point theorems for con-
traction mappings involving the weak topology. Our main result is applied to solve the
following nonlinear integral equation

x(t) = f(x) +
∫ T

0
g(s, x(s))ds, t ∈ [0,T ].

In chapter 3, we provide some expansive Krasnoselskii-type fixed point theorems under
weak topology and apply our result to prove the existence of solution of above equation.

In the last chapter we present an existence theories for the two operator equations
AxBx = x and AxBx+Cx = x, x ∈M , in Banach algebra endowed with weak topology.
Where M is bounded, closed and convex subset of Banach algebra. A, B and C three
operators defined on M . Then we apply this result to the following integral equations.

x(t) = a(t) + T (x)(t)




Ö

q(t) +
σ(t)∫

0

p(t,s,x(s),x(λs))ds

è

.u


 , 0 < λ < 1.

Key words: Fixed point of Krasnoselskii, Contraction mapping, Expansive mapping
Weakly continuous, Sequentially weakly continuous, Integral equation, Banach algebra.
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Résumé

Le but de ce mémoire est d’étudier des nouvelles versions du théorème de point fixe
de Krasnoselskii dans l’espace de Banach sous la topologie faible puis on va appliquer ces
théorèmes sur les équations intégrales non linéaires.

Le mémoire est divisé en quatre chapitres. Dans le premier chapitre on va donner
certains notations, définitions et des théorèmes dont on aura besoin dans les chapitres
suivants.

Dans le chapitre 2, nous présentons quelleques théorèmes du point fixe de Krasnosel-
skii pour les applications contractions sous la topologie faible. Notre résultat principal
est appliqué pour prouver l’existence des solutions de l’équation intégrale non linéaire
suivante,

x(t) = f(x) +
∫ T

0
g(s, x(s))ds, t ∈ [0,T ].

Dans le chapitre 3, nous éutidions des théorèmes du point fixe de type Krasnoselskii
pour les applications expansives sous la topologie faible et appliquer notre résultat pour
prouver l’existence de la solution de l’équation ci-dessus.

Dans le dernier chapitre, nous établissons des théories d’existence pour les équations
suivantes AxBx = x et AxBx + Cx = x, x ∈ M dans l’Algèbre de Banach muni d’une
topologie faible. Où M est un sous ensemble convexe, fermé et borné, de l’algèbre de
Banach. A, B et C trois opérateurs définis sur M . Puis nous appliquons ce résultat à l’
équation intégrale suivante,

x(t) = a(t) + T (x)(t)




Ö

q(t) +
σ(t)∫

0

p(t,s,x(s),x(λs))ds

è

.u


 ,0 < λ < 1.

Mots clés: point fixe de Krasnoselskii, Application contraction, Application expansive
Faiblement continu, Séquentiellement faiblement continu, Équation intégrale, Algèbre de
Banach.
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Acronyms
d(x, y) The distance betweenx and y.
(X, d) Metric space.
(X,‖.‖) Norm vector space.
X∗ Dual topology of X.
X∗∗ Bidual topology of X.
σ(X,X∗) The weak topology.
σ(X∗, X) The weak star topology.
BR The closed ball of center x and radius R.
[M ] The linear span of M.

M
τ Closures of M with respect to the topology τ.

LP The vector space of classes of functions whose exponent power P

is integrable in the sense of Lebesgue, where p > 0.
L(X) The set of continuous linear functions from X into X.
co(M) The closed convex hull ofM .

C(J,X) The set of continuous functions from J intoX.
C(X) The set of continuous functions from X into X .
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Introduction

Fixed point theory is a branch of topology that studies the conditions under which a
function from a set to itself has a fixed point. Advancements in fixed point theory enrich
many scientific fields such as biology, chemistry, computer science, economics and game
theory.

The fixed point theory is at the heart of the nonlinear analysis then that it provides
the necessary tools to have theorems of existence in many different non-linear problems.
It uses its tools of analysis and topology. Depending on the nature of the assumptions
involved, we can divide fixed point theory into two main branches fixed point and metric
theory. Or, fixed point and topological theory.

With respect to the metric approach, the most important metric fixed point result
is the Banach fixed point theorem (also known the contraction mapping theorem or the
contraction mapping principle). It was first stated by Stefan Banach in 1922. This
theorem guarantees the existence and uniqueness of fixed points of certain self maps of a
metric space, and provides a constructive method to find those fixed points .

Concerning the topological branch, results are obtained using topological properties
of the set X. The main result is Schauder fixed point theorem which stated by Schauder
in 1930. This theorem is a generalization of Brower’s fixed point theorem.

Although historically the two branches of the fixed point theory had separate devel-
opment. In 1958, Krasnoselskii established that the sum of two operators A + B has a
fixed point in a nonempty closed convex subset M of a Banach space X, whenever A and
B satisfy :
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Introduction

(i) A(x) +B(y) ∈M for all x,y ∈M ,

(ii) A continuous and compact ,

(iii) B is contraction on X.

This is a captivating result and it has a number of interesting applications. The proof
of this result combines the Banach contraction principle and Schauder fixed point theorem
and thus it is a blend of the two branches.

Recently, as a tentative approach to overcoming such difficulties, many interesting
works have appeared with different ways and directions of weakening conditions (i). In
1998, Burton [9] noticed that the Krasnoselskii fixed point theorem remains valid if the
condition (i) is replaced by the following less restrictive one, ∀y ∈M, x = Bx+Ay imply
that x ∈M . In [4], Barroso proposed the following improvement for condition (i).

If λ ∈ (0, 1), x = λBx+ Ay, y ∈M =⇒ x ∈M.

His result applies to a problem from stability theory and covers cases where Theorem of
Krasnoselskii does not work.

The aim of this memoir is first to studies some new versions of fixed point theorems
of Krasnoselskii types involving the weak topology of Banach spaces, and then to provide
as applications some existence results for some nonlinear integral equations in Banach
spaces endowed with their weak topologies.

The memoir is divided into four chapters. The first one provides some notations that
will be used, we starting from some definitions and auxiliary results. The weak topology
and it’s proprieties are presented in section 1. Elementary fixed point theory is discussed
in Section 2. In section 3, we present the fixed point theory involving the weak topology
of a Banach space.

In the second chapter we present a version of Krasnoselskii’s fixed point theorem for
contraction maps. Starting from a version of Krasnoselskii’s theorem for weakly continu-
ous maps [4]. In section 2, Barroso [3] established new versions of the Krasnoselskii’s fixed
point theorem were obtained for sequentially weakly continuous mappings (i.e. operators
which map weakly convergent sequences into weakly convergent sequences). In Section 3

5



Introduction

we prove the existence of a solution to the nonlinear integral equations in the form,

x(t) = f(x) +
∫ T

0
g(s, x(s))ds, t ∈ [0, T ]. (1)

Where x takes values in a reflexive Banach space. By imposing some conditions on f and
g, we are able to prove the existence of a solution to equation (1).

In chapter three, we provide some expansive Krasnoselskii-type fixed point theorem
for weakly continuous and sequentially weakly continuous mapping and it’s application
to nonlinear integral equations of the form (1).

In chapter four we presented some fixed Point theory in Banach algebras satisfying cer-
tain sequential conditions under the weak topology. We starting by given some definitions
and elementary proprieties which using in this chapter. In section 2 and 3 respectively, we
offer some fixed point theorems in Banach algebras to get the solution for the following
operator equation:

AxBx = x, x ∈M, (2)

and
AxBx+ Cx = x, x ∈M. (3)

Where M is a closed, bounded and convex subset of a Banach algebras X. A, B and
C are three operators defined on M verified some conditions. Our main conditions are
formulated in terms of a weak sequential continuity related to the three nonlinear operators
A, B, and C involved in the previous equations. In section 4, we gives new version of
Krasnoselskii fixed point theorem in Banach algebras for D-Lipschitzian mappings (see
Definition 4.3) under weak topology. In [8] D. W. Boyd and J. S. W. Wong extend the
essential theorem for nonlinear contractions mapping, which used to proved the main
result in this chapter. In the last section we studies solution of the following nonlinear
integral equation:

x(t) = a(t) + T (x)(t)




Ö

q(t) +
σ(t)∫

0

p(t,s,x(s),x(λs))ds

è

.u


 ,0 < λ < 1, (4)

using the result of section 2 and 3, Where (X, ‖ . ‖) be a Banach algebra satisfying
condition (P) (see Definition 4.2) and u 6= 0 is a fixed vector of X and the functions
a, q, σ, p, T are given and verified some conditions.
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Chapter 1
Preliminaries

The aim of this chapter is to introduce the basic concepts, notations, and elemen-
tary results that are used throughout the memoir. We recall some classical results from
functional analysis ([13],[14],[15],[19]).

1.1 Basics of weak topology

The topology induced by a norm on a vector space is a very strong topology in the
sense that it has many open sets. This brings advantages to the functions whose domain
is such a space because for them is easy to be continuous but it brings disadvantages to
compactness because the richness of open sets makes it difficult for a set to be compact.

The weaker topology is the more compact sets we have, this fact motivates us to
search for a topology defined on a normed space X which is the weakest topology among
all topologies which we can define on X, so we can have the biggest class of compact
sets. The topology which gives us the desired result is the weak topology defined on X.
Another useful topology is the weak∗ topology of X∗. These two topologies help us to
characterize properties of topological spaces with infinite dimensions and provide simple
means to check their nature.

7



1. PRELIMINARIES

Definition 1.1. Let X be a Banach space and, X∗ its dual. The weak topology denoted
σ(X,X∗), is the weakest topology in X such that each map f : X → R, f ∈ X∗, is
continuous.

Proposition 1.1. [15] The weak topology σ(X,X∗) is Hausdorff.

Notation: If a sequence (xn) in X converges to x in the weak topology σ(X,X∗) we shall
write xn ⇀ x.

Proposition 1.2. [15] Let (xn) be a sequence in X. Then,

i) [xn ⇀ x weakly in σ(X,X∗)] ⇔ [〈f, xn〉 → 〈f, x〉 ,∀f ∈ X∗],

ii) If xn → x strongly, then xn ⇀ x weakly in σ(X,X∗),

iii) If xn ⇀ x weakly in σ(X,X∗), then (xn) is bounded and ‖x‖ ≤ lim inf ‖xn‖,

iv) If xn ⇀ x weakly in σ(X,X∗) and if fn → f strongly in X∗ (i.e., ‖fn − f‖X∗ → 0),
then 〈fn, xn〉 → 〈f,x〉.

Remark 1.1. When X is finite-dimensional, the weak topology σ(X,X∗) and the usual
topology are the same.

Theorem 1.1. [15] Let X and Y be two Banach spaces and let f be a linear operator
fromX into Y . Assume that f is continuous in the strong topologies. Then f is continuous
from X weak σ(X,X∗) into Y weak σ(Y,Y ∗) and conversely.

Definition 1.2. The weak∗ topology of the dual space of a normed spaceX is the smallest
topology for X∗ such that, for each x in X, the linear functional x∗ 7→ 〈x∗, x〉 on X∗ is
continuous.

Remark 1.2. All properties which are stated for weak topology of X can be adapted
and hold for the weak∗ topology of X∗.

Definition 1.3. Let X be a Banach space and let J : X → X∗∗ be the canonical injection
from X into X∗∗ defined as follows: given x ∈ X the map f 7−→ 〈f, x〉 is a continuous
linear functional on X∗, thus it is an element of X∗∗, which we denote by Jx. We have

〈Jx,f〉X∗∗,X∗ = 〈f,x〉X∗,X , ∀x ∈ X, ∀f ∈ X∗.

8



1. PRELIMINARIES

The space X is said to be reflexive if J is surjective, i.e., J(X) = X∗∗ .

Now, let us recall the following definitions:

Definition 1.4. Let A be a subset of topological space X.

1. The set A is said to be compact if any cover of A by open sets admits a finite
subcover

A is said to be relatively compact if its closure is a compact subset of X.

2. A is said to be precompact if every sequence in A contains a convergent subsequence.

3. A is said to be countably compact if any countable cover of A by open sets admits
a finite subcover i.e. ∀(xn)n∈N ⊂ A, ∃(xα)α∈A ⊂ (xn)n∈N such that xα → x ∈ A.

A is called relatively countably compact if its closure is countably compact.

4. A is called limit-point compact if every infinite subset of A has at least one accu-
mulation point that belongs to A. A is called relatively limit-point compact if every
infinite subset of A has, at least, one accumulation point.

5. A is said to be sequentially compact if any sequence in A has a subsequence con-
verging to some element of A i.e. ∀(xn)n∈N ⊂ A, ∃(xn)k ⊂ (xn)n∈N such that
(xn)k → x ∈ A. A is called relatively sequentially compact if every sequence in A
has convergent subsequence.

Remark 1.3. We recall that a set is weakly compact, if it is compact in the topology
σ(X,X∗).

Definition 1.5. We said that a subset M ⊂ X is convex if ∀x, y ∈ M,∀ t ∈ [0, 1]
tx+ (1− t)y ∈M.

Lemma 1.1. [15] LetM be a convex subset of X. ThenM is closed in the weak topology
σ(X,X∗) if and only if it is closed in the strong topology.

Theorem 1.2. (Kakutani, [15] ) A Banach space X is reflexive if and only if BX is weakly
compact. Where

BX = {x ∈ X ‖ x ‖≤ 1}.

9



1. PRELIMINARIES

Lemma 1.2. Let X be a reflexive Banach space. Let K ⊂ X be a bounded, closed, and
convex subset of X. Then K is compact in the topology σ(X,X∗).

Proof. If K is closed and convex, by Lemma 1.1 it is weakly closed. Since it is bounded,
it is included in B(0, R) for some R > 0 and this set is weakly compact by Kakutani
theorem. Closed subsets of compact sets are compact, so K is weakly compact. �

Lemma 1.3. [15] Assume that X is a reflexive Banach space and let (xn) be a bounded
sequence in X. Then there exists a subsequence that converges in the weak topology
σ(X,X∗).

Lemma 1.4. (Bihari, [25]) Let x : [a,b]→ R+ be a continuous function that satisfies the
inequality:

x(t) ≤M +
∫ t

0
ψ(s)ω(x(s))ds, t ∈ [a,b],

where M ≤ 0, ψ : [a,b] → R+ is continuous and ω : R+ → R+
∗ is continuous and

monotone-increasing. Then the estimation

x(t) ≤ φ−1
Ç
φ(M) +

∫ t

0
ψ(s)

å
ds, t ∈ [a,b],

holds, where φ : R→ R is given by

φ(u) :=
∫ t

a

ds

ω(s) , u ∈ R.

1.2 Some definitions and fundamentals theorems

In this section we will present some definitions and theorems which will be used during
the proofs that will be presented during the memoir.

Definition 1.6. • A map f : X → X is said to be weakly continuous if for every
ϕ ∈ X∗, we have ϕ ◦ f : X → R is continuous.

• A map f : X → X is said to be sequentially weakly continuous, if for every sequence
xn ⊂ X and x ∈ X such that xn ⇀ x we have that fxn ⇀ fx.

10



1. PRELIMINARIES

Definition 1.7. The mapping f : X → X is called demicontinuous if it maps strongly
convergent sequences into weakly convergent sequences i.e., if {xn} ⊂ X and x ∈ X such
that xn → x then fxn ⇀ fx.

Definition 1.8. The mapping f : X → X is called to be strongly continuous on X, if
for every sequence {xn} with xn ⇀ x, we have fxn → fx.

Definition 1.9. let f be a function from a set X into Y .

(i) The function f is said to be one -to- one or injective if f(x1) = f(x2) implies x1 = x2

for x1 , x2 ∈ X,

(ii) The function f is said to be onto or surjective if for each y ∈ Y there exists an
x ∈ X such that f(x) = y,

(iii) The function f is said to be bijective if it is both one -to- one and onto .

Theorem 1.3. (Dominated convergence theorem, Lebesgue, [15]) Let Ω a nonempty set
and (fn) be a sequence of functions in L1 that satisfy

(i) fn(x)→ f(x) a.e.on Ω,

(ii) there is a function g ∈ L1 such that for all n, |fn(x)| ≤ g(x) a.e.on Ω.

Then f ∈ L1 and ‖ fn − f ‖1 → 0. where ‖ f ‖1 =
∫
Ω
|f(x)|dx

Definition 1.10. let f : X → Y, where (X,Σ,µ) is a measure space and Y is a topological
vector space. We say that f is pettis integrable if

ϕ ◦ f ∈ L1(X,Σ,µ) for all ϕ ∈ Y ∗.

And there exist a vector e ∈ Y so that

∀ϕ ∈ Y ∗ : 〈ϕ, e〉 =
∫

X
〈ϕ, f(x)〉dµ(x).

Theorem 1.4. [17] Let (M,Σ, µ) be a finite perfect measure space and let f be a bounded
function from M into X. satisfying the following two conditions:

11



1. PRELIMINARIES

(a) There exists a sequence of Pettis integrable functions

fn : M → X, n ∈ N , such that lim
n
x∗fn = x∗f in measure, for each x∗ ∈ X∗ ,

(b) There exists a Pettis integrable function g : M → X such that |x∗fn| ≤|x∗g| µ.a.e
for each x∗ ∈ X∗ and n ∈ N (the exceptional set depends on x∗ ) .

Then f is Pettis integrable and lim
n

∫
E fndµ =

∫
E fdµ weakly for all E ∈ Σ.

Definition 1.11. Let X be a Banach space. An operator f : X → X is said to be weakly
compact if f(B) is relatively weakly compact for every bounded subset B ⊂ X.

Theorem 1.5. (Arzela-Ascoli’s Theorem)[14, Theorem A.2.1. ] A subset F in C([a, b],X)
is relatively compact if and only if.

(i) F is equicontinuous on [a, b], i.e., for every ε > 0 there is a δ > 0 such that
|ϕ(x)− ϕ(y)| < ε for all ϕ ∈ F whenever |x− y| < δ, and x, y ∈ [a, b],

(ii) There exists a dense subsetD in [a, b] such that, for each t ∈ D, F (t) = {f(t); f ∈ F}
is relatively compact in X.

Definition 1.12. A family F = {fi, i ∈ J}, where J is some index set, is said to be
weakly equicontinuous if, given ε > 0 and ϕ ∈ X∗, there exists δ > 0 such that, for
s, t ∈ [0, T ], if |t− s| < δ, then

|ϕ(fi(t)− fi(s))| < ε, ∀i ∈ J,

i.e. ϕ(F ) is equicontinuous for all ϕ ∈ X∗.

Clearly, we have

Proposition 1.3. [21] If F = {fi, i ∈ J} is equicontinuous then, F is weakly equicontin-
uous.

Definition 1.13. A sequence (xn) is weakly Cauchy if for every x∗ ∈ X∗, the sequence
(x∗(xn)) is Cauchy in the scalar filed.

Definition 1.14. Let X be a Banach space, we recall that it is sequentially weakly
complete if any weakly Cauchy sequence in X is weakly convergent .

12



1. PRELIMINARIES

Theorem 1.6. (Arzéla-Ascoli )[14, Theorem A.3.1. ] Let X be a sequentially weakly
complete Banach space. A family F in the space C([a,b];X), endowed with the uniform
weak convergence topology, is sequentially relatively compact if and only if:

(i) F is weakly equicontinuous on [a, b],

(ii) there exists a dense subset D in [a, b] such that, for each t ∈ D, the section J(t) =
{f(t); /f ∈ F} is sequentially weakly relatively compact in X.

We present a direct consequence of the Hahn-Banach theorem.

Theorem 1.7. [21] Let X be a normed space with 0 6= x0 ∈ X. Then there exists φ ∈ X∗

such that ‖ φ ‖= 1 and φ(x0) =‖ x0 ‖.

The following theorem play the key role in this memoir.

Theorem 1.8. (Eberlein-Šmulian’s Theorem, [18] ) let A a subset of Banach space X
the following assertions are equivalent

(i) The set A is (relatively) weakly compact,

(ii) The set A is (relatively) weakly sequentially compact,

(iii) The set A is (relatively) weakly countably compact.

Before presenting the proof we present some important definitions and theories, we will
use [18].

Definition 1.15. A sequence (ek)∞k=1 in a Banach space X is called a basic sequence if
it is a basis for [ek], the closed linear span of (ek)∞k=1.

Lemma 1.5. If A is a bounded set in X such that Aweak∗ ⊂ X then A is relatively weakly
compact.

Theorem 1.9. Let M be a bounded subset of a Banach space X such that 0 /∈ M‖‖.
Then the following are equivalent

(i) M fails to contain a basic sequence,

13



1. PRELIMINARIES

(ii) Mweak is weakly compact and fails to contain 0.

Definition 1.16. A point x ∈ X is a cluster point of a sequence (xn)n∈N if, for every
neighborhood V of x, there are infinitely many natural numbers n such that xn ∈ V . If
the space is sequential (you can do topology in it using only sequence ), this is equivalent
to the assertion that x is a limit of some subsequence of the sequence (xn)n∈N .

Lemma 1.6. If (xn)∞n=1 is a basic sequence in a Banach space X and x ∈ X is a weak
cluster point of (xn)∞n=1. Then, x = 0.

Lemma 1.7. Let A be a relatively weakly countably compact subset of a Banach space
X. Suppose that x ∈ X is the only weak cluster point of the sequence (xn)∞n=1 ⊂ A. Then
(xn)∞n=1 converges weakly to x.

Now, we state the proof of Theorem 1.8.

Proof. Since every sequence can be considered as a special case of a net (i) and (ii) both
imply (iii). We have to show that (iii) implies both (ii) and (i). First we will prove the
relativized versions and then show that the result for non relativized versions can follow
easily. Note that each of the statements implies that A is bounded.
(iii) =⇒(ii). Let (xn)∞n=1 be any sequence in A. Then, by hypothesis, there is a weak
cluster point x of (xn)∞n=1. If x is in the norm closure of the set {xn}∞n=1, then there is a
subsequence which converges and we are done. If not, applying Theorem 1.9, we construct
a subsequence (yn)∞n=1 of (xn)∞n=1 so that (yn−x)∞n=1 is a basic sequence. Since (yn−x)∞n=1

is in A which is relatively weakly compact then it has a weak cluster point y. So, if B is
an arbitrary index set, there exists a net (xβ)β∈B ⊂ (yn)∞n=1 with xβ → y. We have

(xβ − x)β∈B ⊂ (yn − x)∞n=1 and (xβ − x)→ y − x,

therefore y − x is a weak cluster point of the basic sequence (yn − x)∞n=1 By Lemma 1.6
y−x = 0, therefore y = x. Thus x is the only weak cluster point of (yn)∞n=1. By Lemma 1.7
(yn)∞n=1 converges to x. So we proved that every sequence (xn)∞n=1 ⊂ A has a convergent
subsequence (yn)∞n=1 and therefore A is relatively weakly sequentially compact.
(iii) =⇒ (i). Suppose the opposite, that A is not relatively weakly compact by Lemma

14
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1.5 then, the weak ∗ closure W of A is not contained in X. Thus there exists x∗∗ ∈ W\X.
Pick x∗ ∈ X∗ so that x∗∗(x∗) > 1. Then consider the set A0 = {x ∈ A : x∗(x) > 1}. The
set is not relatively weakly compact since x∗∗ is in its weak∗ closure. Theorem 1.9 gives
us a basic sequence (xn)∞n=1 contained in A0. Since (xn)∞n=1 ⊂ A0 ⊂ A and A relatively
countably compact then (xn)∞n=1 must have a weak cluster point x which by Lemma 1.6
should be x = 0. This is a contradiction since, by construction, x∗(x) ≥ 1. �

Some consequence of the Eberlein Šmulian Theorem is the following result.

Theorem 1.10. (Krein-Šmulian’s Theorem, [19]) The closed, convex hull of weakly com-
pact subset of a Banach space is weakly compact.

1.3 Elementary fixed point theorems

In this section, we offer the main fixed point theorems, which can be found in many
books of analysis, topology and functional analysis (see [8], [13]). At the beginning we
recall several basic definitions and concepts used further on.

Definition 1.17. let f be a mapping of a set X into itself. Then a point x ∈ X is said
to be fixed point of f if f(x) = x.

Definition 1.18. A set X is called a locally convex linear topological spaces

• if X is a linear space and at the same time a topological space such that the two
mappings X × X → X : (x, y) → x + y and K × X → X : (α, x) → αx are both
continuous,

• And if any of its open sets O 3 0 contains a convex, balanced and absorbing open
set (in other words, the element 0 has a base of convex, balanced and absorbing
neighbored).

Recall that, a set M ⊂ X is balanced if : x ∈ M and |α| ≤ 1 imply αx ∈ M . M is
absorbing if for any x ∈ X, there exists α > 0 such that α−1x ∈M .
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Definition 1.19. let (X, d) be a metric space and M be a subset of X. The mapping
f : M → X is called contractive, if there exists a constant α < 1 such that

d(fx, fy) ≤ α d(x, y) ∀x, y ∈M.

Lemma 1.8. Let X be a linear vector space and M ⊂ X a nonempty subset.
If f : M → X a contraction. Then, the mapping I − f : M → (I − f)(M) is an
homeomorphism.

Proof. Since
‖(I − f)x− (I − f) y‖ ≤ (1 + α) ‖x− y‖ .

The mapping I − f is continuous. In addition

‖(I − f)x− (I − f) y‖ ≥ (1− α) ‖x− y‖ (0 < α < 1).

Which proof that I − f is one-to-one, thus the inverse of I − f : M → (I − f)(M) exists
and continuous. �

Definition 1.20. let (X, d) be a metric space and M be a subset of X. The mapping
f : M → X is called expansive, if there exists a constant h > 1 such that

d(fx, fy) ≥ h d(x, y) ∀x, y ∈M.

Lemma 1.9. Let (X,‖ · ‖) be a linear normed space, M ⊂ X. Suppose that the mapping
f : M → X is expansive with constant h > 1. Then the inverse of F exists. Where
F := I − f : M → (I − f)(M) and

‖F−1x− F−1y‖ ≤ 1
h− 1‖x− y‖ x, y ∈ F (M). (1.1)

Proof. For each x, y ∈M we have

‖ Fx− Fy ‖=‖ (fx− fy)− (x− y) ‖≥ (h− 1) ‖ x− y ‖ . (1.2)

Which shows that F is one-to-one, hence the inverse of F : M → F (M) exists. Now
taking x, y ∈ F (M), then F−1x, F−1y ∈M thus using F−1x, F−1y substitute for x, y in
(1.2) respectively, we obtain

‖ F−1x− F−1y ‖≤ 1
h− 1 ‖ x− y ‖ ∀x,y ∈ F (M).
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Definition 1.21. Let X be a Banach space. A mapping f : X → X is said to be
nonexpansive if

‖ fx− fy ‖≤‖ x− y ‖ for all x, y ∈ X.

In the first, we show theorem known as the Banach contraction principle was formu-
lated by Banach in 1922. Let describe this theorem.

Theorem 1.11. (Banach, [13]) Let (X, d) be a complete metric space and f : X → X

be a contraction with constant α. Then f has a unique fixed point x ∈ X.

Theorem 1.12. (Schauder, [13] ) LetM be a closed convex set in a Banach space X and
assume that f : M → M is continuous mapping such that f(M) is relatively compact
subset of M . Then, f has a fixed point.

Theorem 1.13. (Schauder-Tychonoff, [12] ) Let M be a convex, and compact subset of
a locally convex topological space X. If f is a continuous map on M into M , then f has,
at least a fixed point.

Krasnoselskii combined the two main fixed point theorems, Banach contraction map-
ping principle and Schauder fixed point theorem into the following result.

Theorem 1.14. (Krasnoselskii, [23]) Assume that M is closed bounded convex subset of
a Banach space X. Furthermore that A and B are mapping from M into X such that:

(i) A(x) +B(y) ∈M for all x, y ∈ C,

(ii) A continuous and compact ,

(iii) B is a λ−contraction on X with λ < 1.

Then ∃ x ∈M such that A(x) +B(x) = x.

An important fixed point theorem that has been commonly used in the theory of
nonlinear differential and integral equations is the following result proved by D. W. Boyd
and J. S. W. Wong [8]. This theorem extends the contractions to nonlinear contractions,
and also generalizes the Banach fixed point principle .

Theorem 1.15. (Boyd and Wong, [13]) Let X be a Banach space and f : X → X be a
nonlinear contraction. Then, f has a unique fixed point x, and the sequence (fnx)n of
successive iterations of f converges to x for each x ∈ X.
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1.4 Fixed point theory relative to the weak topology

Now, we present fixed point theorems involving the weak topology of Banach space.
The results presented in this section are importance and the most works study in Chapters
2, 3 and 4 are based on these theorems.

Theorem 1.16. (Schauder-Tychonoff Theorem for the weak topology, [21] ) Let X be a
Banach space andM a weakly compact convex subset of X. Then, any weakly continuous
map f : M →M has at least one fixed point.

Theorem 1.17. (Modified Schauder-Tychonoff Theorem, [21] ) Let X be a Banach space
and M a closed convex subset of X. Then, any weakly continuous and weakly compact
map f : M →M has at least one fixed point.

Let show the version of Schauder fixed point principal which was obtained by Arino
Gautier and Penot in 1984 [1, Theorem 1].

Lemma 1.10. let M be a weakly compact convex subset of a Banach space X. Then
each sequentially weakly continuous map f : M →M has a fixed point in M .

Proof. It suffice to proved that f is weakly continuous, so that the Schauder-Tychonoff
fixed point Theorem 1.16 applies. Now for each weakly closed subset B of X, f−1(B)
is sequentially closed in M , hence sequentially weakly compact (because M is weakly
compact); and by the Eberlein Šmulian Theorem 1.8, f−1(B) is weakly compact. So
f−1(B) is weakly closed, hence f is weakly continuous. �

Theorem 1.18. [13, Theorem 2.2.1] Let X be a Banach space, M be a nonempty closed
convex subset of X and f : M → M be a sequentially weakly continuous map. If f(M)
is relatively weakly compact, then f has a fixed point in M .

Proof. Let C = co(f(M)) be the closed convex hull of f(M). Since f(M) is rela-
tively weakly compact, then C is a weakly compact convex subset of X. Moreover,
f(C) ⊂ f(M) ⊂ co(f(M)) = C i.e., f maps C into itself. Since f is weakly sequentially
continuous, and by using Lemma 1.10, it follows that f has, at least, one fixed point in
C. �
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Definition 1.22. let (X, τ) a Hausdorff topological vector space, M a nonempty subset
of X. f : M → M be a mapping. A sequence xn in M is called a τ -approximate fixed
point sequence for f if xn − f(xn) τ−→ 0, as n→∞.

Theorem 1.19. [5] Let M be a weakly compact convex subset of a Banach space X.
Then every demicontinuous mapping f : M → M has a weak-approximate fixed point
sequence.
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Chapter 2
Krasnoselskii Fixed Point Theorems for
Contraction Maps

In this chapter, several other attempts have been made in the literature in order to
prove the analogousness of Krasnoselskii fixed point theorem under the weak topology.

2.1 Krasnoselskii’s fixed point theorem for weakly
continuous maps

In 2003, Barroso [4] established a version of Krasnoselskii fixed point theorem using
the weak topology of a Banach space. His result only requires the weak continuity and
weak compactness of A. While B is a linear operator satisfying ‖Bp‖ ≤ 1.

Theorem 2.1. let M be a closed convex subset of a Banach space (X,‖.‖). Assume that
A : M → X, and B ∈ L(X) satisfies

(i) ‖Bp‖ < 1 for some p ≥ 1,

(ii) A is weakly continuous and A(M) is weakly precompact,

(iii) x = Bx+ Ay, y ∈M =⇒ x ∈M .
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Then there is x ∈M such that Ax+Bx = x.

Proof. By Banach’s contraction principal for each y ∈ M there exists a unique x =
x(y) ∈ X so that x = Bx+ Ay, which we have x ∈M by assumption (iii).
Now, define

(I −B)−1 = (I −Bp)−1
p−1∑

k=0
Bk. (2.1)

Then (I−B)−1 is well defined, by (2.1) we have (I−B)−1 ∈ L(X) and (I−B)−1(I−B) = I.
By Theorem 1.1, (I−B)−1 is a weakly continuous operator on X. Hence, because (ii), the
map from M into itself y 7−→ (I−B)−1A(y) = x is weakly continuous in M . Since A(M)
is weakly precompact, so (I − B)−1A(M) is. Once M is closed convex, we may apply
Theorem 1.18 and conclude that (I − B)−1A has a fixed point in M . So, this completes
the proof. �

If assumption (i) is interchanged by ‖Bp‖ = 1, the same technique is used in the proof
of Theorem 2.1 namely Banach contraction principle, cannot be applied. Thus, in order
to study such cases some additional hypothesis may be required. Inspired by proof of
Theorem 2.1 we introduce the following condition:

[λ ∈ (0,1) and x = λBx+ Ay, y ∈M ] =⇒ x ∈M. (2.2)

Now, we can state the following result .

Theorem 2.2. Let X be a Banach space and M a weakly compact convex, subset of X.
Assume (2.2) with B ∈ L(X), ‖Bp‖ ≤ 1, for some p ≥ 1, and A : M → X being weakly
continuous. Then fixed points for A+B and A are achieved in M .

Proof. For 0 < λ < 1 define Bλ = λB. Then, Bλ ∈ L(X), ‖Bp
λ‖ < 1. Now, arguing as

in the proof of Theorem 2.1 by using condition (2.2), we find a family xλ ⊂M such that
Axλ + λBxλ = xλ for all λ ∈ (0,1). Taking now a sequence 0 < λn < 1 so that λn → 1
and considering the respective sequence xn ⊂M satisfying

Axn + λnBxn = xn for all n ∈ N. (2.3)

As M is weakly compact, we can find a subsequence xni
such that xni

⇀ x in X with
x ∈ M . A is weakly continuous so Axni

⇀ Ax in X. Besides, Bxni
⇀ Bx in X since
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B ∈ L(X). So, passing the limit in (2.3) we conclude that x is a fixed point for A + B.
Similarly, for a sequence 0 < λn < 1 converging to 0 on obtains a fixed point for A. �

Definition 2.1. Let X be a Banach space. An operator A with domain D(A) ∈ X is
called dissipative if

∀λ > 0,∀x ∈ D(A), ‖ x ‖≤‖ (I − λA)x ‖ .

In a Hilbert space, A is called dissipative if

Re(Ax, x) ≤ 0, ∀x ∈ D(A).

Next, we shall provide a sufficient condition for getting (2.2) fulfilled.

Proposition 2.1. Let X be a Banach space and suppose that A : X → X is a mapping
such that ABR ⊆ BR, for some R > 0. If B ∈ L(X) is a dissipative operator, then
condition (2.2) holds.

Proof. Since B is dissipative operator on X we have,

‖x‖ ≤ ‖(I − λB)x‖ ∀x ∈ X, ∀λ > 0. (2.4)

Now, let λ ∈ (0,1) and suppose that x = λBx + Ay, with y ∈ BR. From (2.4) we have
‖x‖ ≤ ‖(I − λB)x‖ = ‖Ay‖ ≤ R, Since Ay ∈ BR. So x ∈ BR and the proposition is
proved. �

Remark 2.1. Proposition 2.1 also implies condition (iii) of Theorem 2.1.

By Lemma 1.2, Proposition 2.1 combined with Theorem 2.2 immediately yields the
following result.

Theorem 2.3. Suppose X is reflexive and assume that B ∈ L(X) with ‖BP‖ ≤ 1, p ≥ 1
is a dissipative Operator on X. If A : X → X is weakly continuous mapping such that
ABR ⊆ BR for some R > 0, then there is x ∈ BR such that Ax+Bx = x.
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2.2 Krasnoselskii’s fixed point theorem for weakly
sequentially continuous maps

In 2005, new versions of the Krasnoselskii’s fixed point theorem were obtained for
sequentially weakly continuous mappings [3]. Consequently we have the following result
which will be used in this form in Section 3.

Theorem 2.4. Let M be a closed, convex subset of a Banach space X. Assume that
A,B : M → X satisfies:

(i) A is sequentially weakly continuous,

(ii) B is λ-contraction,

(iii) If x = Bx+ Ay for some y ∈M , then x ∈M ,

(iv) If xn is a sequence in F where

F := {x ∈ X : x = B(x) + A(y) for some y ∈M}.

Such that xn ⇀ x, for some x ∈M , then Bxn ⇀ Bx,

(v) The set F is relatively weakly compact.

Then A+B has a fixed point in M .

Proof. Fix a point x ∈M and let Tx be the unique point inX such that Tx = BTx+Ax.
By (iii), we have Tx ∈ M . So that the mapping T : M −→ M given by x 7−→ Tx is
well-defined. Notice that Tx = (I −B)−1Ax, for all x ∈M . In addition, we observe that
T (M) ⊂ F. We claim now that T is sequentially weakly continuous inM . Indeed, let xn be
a sequence in M such that xn ⇀ x in M . Since Txn ⊂ F, the assumption (v) guarantees,
up to a subsequence, that Txn ⇀ y, for some y ∈ M . By (iv), we have BTxn ⇀ By.
Also, from (i) it follows that Axn ⇀ Ax and hence the equality Txn = BTxn +Axn give
us y = By + Ax. By uniqueness, we conclude that y = Tx. This proves the claim. Take
now the subset C = co(F) ⊂M . Krein-Šmulian Theorem 1.10 implies that C is a weakly
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compact set. Furthermore, it is easy to see that T (C) ⊂ C. Applying lemma 1.10, we find
a fixed point x ∈ C for T . Consequently, this proves Theorem . �

Let us now state some consequences of Theorem 2.4. The first one is the following
result for reflexive Banach spaces, where closed, convex and bounded sets are weakly
compacts.

Corollary 2.1. Assume that the conditions (i)-(iv)of Theorem 2.4 are fulfilled for A and
B. If M is a closed, convex and bounded subset of a reflexive Banach space, then A+B

has a fixed point in M .

Corollary 2.2. LetM be a convex and weakly compact subset of a Banach space X and
let A,B : M → X be sequentially weakly continuous operators such that

(i) B is nonexpansive,

(ii) If λ ∈ (0,1) and x = λBx+ Ay with y ∈M , then x ∈M .

Then A+B has a fixed point in M .

Finally, we give the following asymptotic version of the Krasnoselskii fixed point
theorem.

Theorem 2.5. Let M be a nonempty bounded, closed and convex subset of a reflexive
Banach space X. Suppose that A : M → X and B : X → X are continuous maps
satisfying:

(i) A is weakly sequentially continuous and A(M) is relatively weakly compact,

(ii) B is a strict contraction,

(iii) x = Bx+ Ay, y ∈M implies x ∈M .

Then, xn − (A+B)xn ⇀ 0 for some sequence (xn) in M .

Proof. First notice thatM is a bounded closed convex subset of a reflexive Banach space,
hence M is weakly compact. On the other hand, since B is a strict contraction, then by

24



2. KRASNOSELSKII FIXED POINT THEOREMS FOR CONTRACTION MAPS

Lemma 1.8 the mapping (I − B) is a homeomorphism from X into (I − B)X. Next, let
y be fixed in M . The map which assigns to each x ∈ X the value Bx + Ay defines a
strict contraction from X into X. So, by the Banach fixed point principle, the equation
x = Bx + Ay has a unique solution x ∈ X. By hypothesis (iii) we have x ∈ M . Hence,
x = (I − B)−1Ay ∈ M which implies that the mapping (I − B)−1A is well defined and
(I − B)−1AM ⊆ M . By (i) the mapping (I − B)−1A is demicontinuous. Thanks to
Theorem 1.19 there is a sequence (yn) in M such that

yn − (I −B)−1Ayn ⇀ 0. (2.5)

SinceM is weakly compact, then by extracting a subsequence if necessary, we may assume
that yn ⇀ y. So, (2.5) implies (I − B)−1Ayn ⇀ y. Since A is sequentially weakly
continuous, then Ayn ⇀ Ay and A(I −B)−1Ayn ⇀ Ay. Now, let (xn) be the sequence of
M defined by xn = (I −B)−1Ayn. Then, we have

xn − (Axn +Bxn) = (I −B)xn − Axn
= Ayn − Axn
= Ayn − A(I −B)−1Ayn.

We obtain that xn − (Axn +Bxn) ⇀ 0. This completes the proof. �

2.3 Application to a non linear integral equation

The purpose of this section is to study the existence of solutions of some nonlinear
functional integral equations in the space of continuous functions under some conditions.
To do this, we will use Krasnoselskii fixed point theorem. In this section we deal with the
following integral equation

x(t) = f(x) +
∫ t

0
g(s, x(s))ds, x ∈ C(J,X). (2.6)

Where X is a reflexive space and I = [0,T ]. Assume that the functions involved in (2.6)
satisfy the following conditions
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(H1) f : X → X is sequentially weakly continuous and onto,

(H2) ‖f(x)− f(y)‖ ≤ λ‖x− y‖, (λ ≤ 1) for all x,y ∈ X,

(H3) ‖ x ‖≤‖ x− (f(x)− f(0)) ‖,

(H4) for any t ∈ J , the map gt = g(t, ·) : X → X is sequentially weakly continuous,

(H5) for each x ∈ C(J,X), g(·, x(·)) is Pettis integrable on [0, T ],

(H6) there exist α ∈ L1[0, T ] and a nondecreasing continuous function φ from [0,∞) to
(0,∞) such that ‖g(t, x)‖ ≤ α(t)φ(‖x‖) for a.e. t ∈ [0, T ] and all x ∈ X. Further,
assume that ∫ T

0
α(s)ds <

∫ ∞

‖f(0)‖

dr

φ(r) .

β(t) =
∫ t

‖f(0)‖

dr

φ(r) and b(t) = β−1Ä ∫ t

0
α(s)ds

ä
.

Our existence result for (2.6) is as follows.

Theorem 2.6. Under assumptions (H1)-(H6), equation (2.6) has at least one solution
x ∈ C(I,X).

Proof. We have ∫ b(t)

‖f(0)‖

dr

φ(r) =
∫ t

0
α(r)dr. (2.7)

It follows from (2.7) and the final part of (H6) that b(T ) <∞. Now we define the set

M =
¶
x ∈ C(J,X) : ‖x(t)‖ ≤ b(t) for all t ∈ I

©
.

Our strategy is to apply Theorem 2.4 in order to find a fixed point for the operator A+B

in M , where A,B : M → C(I,X) are defined by

Ax(t) = f(0) +
∫ t

0
g(s, x(s))ds,

Bx(t) = f(x(t))− f(0).

The proof will be given in several steps.
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Step 1: M is bounded, closed and convex in C(I,X).
The fact that M is bounded and closed comes directly from its definition. Let us show
M is convex. Let x, y be any two points in M . Then, there holds

‖ sx(t) + (1− s)y(t) ‖≤ b(t),

for all t ∈ I, which implies that sx + (1− s)y ∈ M , for all s ∈ [0,1]. This shows that M
is convex.
Step 2: A(M) ⊆M , A(M) is weakly equicontinuous and relatively weakly compact.

(i) Let x ∈M be an arbitrary point. We shall prove Ax ∈M . Fix t ∈ I and consider
Ax(t). Without loss of generality, we may assume that Ax(t) 6= 0. By Theorem 1.7 there
exists ψt ∈ X∗ with‖ ψt ‖= 1 such that 〈ψt, Ax(t)〉 = ‖Ax(t)‖. Thus,

‖Ax(t)‖ = 〈ψt, f(0)〉+
∫ t

0
〈ψt,g(s, x(s))〉ds

≤ ‖f(0)‖+
∫ t

0
α(s)φ(‖x(s)‖)ds

≤ ‖f(0)‖+
∫ t

0
α(s)φ(b(s))ds.

According to Bihari’s inequality we have :

‖Ax(t)‖ ≤ b(t).

(2.8)

Then, (2.8) implies that A(M) ⊆M . Analogously one shows that,

‖Ax(t)− Ax(s)‖ ≤
∫ t

s
α(τ)φ(‖x(τ)‖)dτ

≤
∫ t

s
α(τ)φ(b(τ))dτ

≤
∫ t

s
b′(τ)dτ

≤ |b(t)− b(s)|.

(2.9)

For all t, s ∈ I. Thus it follows from (2.9) that A(M) is equicontinuous.
(ii) Let (Axn) be any sequence in A(M). Notice that M is bounded. By reflexiveness,

for each t ∈ I the set {Axn(t) : n ∈ N} is relatively weakly compact. As before, one
shows that {Axn : n ∈ N} is a equicontinuous subset of C(I,X). It follows now from the
Eberlein-Šmulian’s Theorem 1.8 and Ascoli-Arzela Theorem 1.6 that A(M) is relatively
weakly compact, which proves the third assertion of Step 2.

27



2. KRASNOSELSKII FIXED POINT THEOREMS FOR CONTRACTION MAPS

Step 3: A is sequentially weakly continuous.
Let (xn) be a sequence in M such that xn ⇀ x in C(I,X), for some x ∈ M . Then,

xn(s) ⇀ x(s) in X for all s ∈ I. By assumption (H5) one has that

g(s, xn(s)) ⇀ g(s, x(s)) in X for all s ∈ I.

The Lebesgue dominated convergence Theorem yields that Axn(t) ⇀ Ax(t) in X for all
t ∈ I. On the other hand, it follows from (2.9) that the set {Axn : n ∈ N} is a weakly
equicontinuous subset of C(I,X). Hence, by the Ascoli-Arzela Theorem there exists a
subsequence (xnj

) of (xn) such that Axnj
⇀ y for some y ∈ C(I,X). Consequently, we

have that y(t) = Ax(t) for all t ∈ I and hence Axnj
⇀ Ax. Now, a standard argument

shows that Axn ⇀ Ax. This proves Step 3.
Step 4: B satisfies conditions (ii) and (iv) of Theorem 2.4.

By (H2) clearly we see that B is a λ contraction in C(I,X). Now, in order to verify
condition (iv) to B, we first remark that by combining (2.9) with (H2), it follows that
F is equicontinuous in C(I,X). So is B(F). Let now (xn) ⊂ F be sequence such that
xn ⇀ x, for some x ∈ M . Then by assumption (H1), we obtain Bxn(t) ⇀ Bx(t). Since
(Bxn) is equicontinuous in C(I,X) and ‖ (Bxn)(t) ‖≤ λ ‖ xn(t) ‖ holds for all n ∈ N ,
we may apply the Ascoli-Arzela Theorem and concludes that there exists a subsequence
(xnj

) of (xn) such that Bxnj
⇀ y, for some y ∈ C(I,X). Hence, Bx = y and by standard

arguments we have Bxn ⇀ Bx in C(I,X). This completes Step 4.
Step 5: Condition (iii) of Theorem 2.4 holds.

Suppose that x = Bx+Ay for some y ∈M . We will show that x ∈M . By condition
(H3) it follows that ‖ x(t) ≤‖ x(t) − Bx(t) ‖=‖ Ay(t) ‖. Once y ∈ M implies Ay ∈ M ,
we conclude x ∈M .
Step 6: Condition (v) of Theorem 2.4 holds.

Let (xn) ⊂ F be an arbitrary sequence. Then,(xn) is equicontinuous in C(I,X). Also,
one has that

‖ xn(t) ‖≤ (1− λ)−1b(t),

for all t ∈ I, that is, for each t ∈ I the set {xn(t)} is relatively weakly compact in X.
Thus, invoking again the Ascoli-Arzela Theorem we obtain a subsequence of (xn) which
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converges weakly in C(I,X). By the Eberlein-Šmulian Theorem, it follows that F is
relatively weakly compact.

Theorem 2.4 now gives a fixed point for A+B in M , and hence a solution to (2.6).�
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Chapter 3
Expansive Krasnoselskii-type Fixed Point
Theorems

The point of this chapter is to replace the contractiveness of B by the expansiveness
and derive new fixed point theorems. We will extends some results presented in [23].

Lemma 3.1. Let M be a closed subset of a complete metric space X. Assume that the
mapping B : M → X is expansive and B(M) ⊃ M , then there exists a unique point
x ∈M such that Bx = x.

Proof. B is expansive then the inverse of B : M → B(M) exists, B−1 : B(M) → M

is contractive and hence continue, so B(M) is closed set. Recalling that M ⊂ B(M) by
Banach fixed point theorem there exists x ∈ B(M) such that B−1x = x. Thus x ∈ M
and Bx = x. This completes the proof. �

Lemma 3.2. let B : X → X be a map such that Bn is an expansive for some n ∈ N

Assume further that there exist a closed subset M of X such that M is contained in
B(M). Then there exists a unique fixed point of B.

Proof. Since Bn is expansive map and M ⊆ Bn(M). From Lemma 3.1 there exists
unique fixed point of Bn. Let x ∈ M be a fixed point of Bn. Using the fact that Bn is
expansive map, then there exist k > 1 such that

d(Bn(x), Bn(y)) ≥ kd(x, y) ∀x, y ∈M.
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Hence
d(x,B(x)) = d(Bn(x), Bn+1(x)) ≥ kd(x,B(x)) =⇒ d(x,B(x)) = 0.

Then, B has a unique fixed point in M . �

Remark 3.1. If the mapping B : X → X is expansive and onto, then there exists a
unique point x ∈ X such that Bx = x.

3.1 Krasnoselskii’s fixed point theorem for weakly
continuous maps

In this section we study some fixed point results of Krasnoselskii type fixed point
theorem for the sum of A+B, where A is a weakly continuous and B is expansive linear
operator.

Theorem 3.1. Let X be a Banach space, M be a weakly compact convex subset of X,
A : M → X be an weakly continuous map and B ∈ L(X) be a linear continuous operator.
Assume that A and B satisfy the following hypotheses:

(i) B is an expansive mapping,

(ii) For each z ∈ A(M) we have M ⊂ B(M) + z, where

B(M) + z = {y + z : y ∈ A(M)}.

(iii) for each x, y ∈ coA(M) such that

x = B(x) + A(y) =⇒ x ∈ coA(M).

Then the equation x = B(x) + A(x) has a solution.

Proof. Let y ∈M . Let Fy : M → X be a operator defined by

Fy(x) = B(x) + A(y), x ∈M.
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From Lemma 3.1 there exist unique x(y) ∈M such that x(y) = B(x(y)) + A(y).
By (i) and Lemma 1.9 we obtain that

x(y) = (I −B)−1A(y).

Let us define 


N : M → X

N(y) → x(y)

which is weakly continuous. Since (I −B)−1A(y) and A are weakly continuous.
Let ›M = coA(M) be weakly compact convex. Now we prove only that N(›M) ⊆ ›M .
Indeed, let x ∈ N(›M). Then there exists y ∈ ›M such that x = N(y). Hence

x = (I −B)−1A(y) =⇒ x ∈ coA(M).

Then, N(›M) ⊆ ›M So, by Theorem 1.16, there exists x ∈ X which is fixed point of N .�

Theorem 3.2. Let X be a Banach space, M be a weakly compact convex subset of X.
A : M → X be an weakly continuous map and B ∈ L(X) be a linear continuous operator.
Assume that A and B satisfy the conditions of Theorem 3.1. If only replaced the condition
(i) by that Bn is expansive. We get the same result

3.2 Krasnoselskii’s fixed point theorem for weakly
sequentially continuous maps

We are now ready to state and prove the first main result .

Theorem 3.3. let M ⊂ X be a nonempty closed convex subset. Suppose that A and B
map M into X such that

(i) A is sequentially weakly continuous,

(ii) B is an expansive mapping,

(iii) z ∈ A(M) implies B(M) + z ⊃M , where B(M) + z = {y + z /y ∈ B(M)},
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(iv) If xn is a sequence in F where

F = F(M,M ;B,A) := {x ∈ X : x = B(x) + A(y) for some y ∈M}.

such that xn ⇀ x and Bxn ⇀ y then y = Bx,

(v) The set F(M,M ;A,B) is relatively weakly compact.

Then there exists a point x ∈M with Ax+Bx = x.

Proof. From (ii) and (iii), for each y ∈ M , we see that the mapping B + Ay : M → X

is expansive and B(M) + Ay ⊃M by Lemma 3.1 we have,

Bx+ Ay = x, (3.1)

which has a unique solution x = τ(Ay) ∈ M , so that the mapping τAy : M → M given
by y → τAy is well defined. In view of Lemma 1.9, we obtain that τAy = (I − B)−1Ay

for all y ∈ M . In addition, we observe that τA(M) ⊂ F ⊂ M . We claim that τA is
sequentially weakly continuous in M . To see this, let xn be a sequence in M with xn ⇀ x

in M . Notice that τA(xn) ∈ F. Thus, up to a subsequence, we may assume by (v) that
τA(xn) ⇀ y for some y ∈M . It follows from (i) that Axn ⇀ Ax. From the equality

B(τAxn) + Axn = τAxn. (3.2)

Passing the weak limit in (3.2) yields

B(τAxn) ⇀ y − Ax.

The assumption (iv) now implies that y − Ax = By ( i.e., y = τAx) since x ∈ M this
proves the assertion. Let the set C = co(F), where co(F) denotes the closed convex
hull of F. Then C ⊂ M and is a weakly compact set by Krein -Šmulian Theorem 1.10.
Furthermore, it is straightforward to see that τA maps C into C. In virtue of Lemma
1.10, there exists x ∈ C such that τAx = x. From (3.1) we deduce that

B(τAx) + Ax = τAx.

That is, Bx+ Ax = x. The proof is complete. �
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Remark 3.2. We note that B may not be continuous since it is only expansive. It is
worthy of pointing out that the condition (iii) may be a litter restrictive and the next
result might be regarded as an improvement of Theorem 3.3.

Corollary 3.1. Under the conditions of Theorem 3.3, if only the condition (iii) of The-
orem 3.3 is replaced by that B maps M onto X, then there exists a point x ∈ M with
Ax+Bx = x.

Theorem 3.4. LetM ⊂ X be a nonempty closed convex subset. Suppose that A : M →
X and B : X → X such that

(i) A is sequentially weakly continuous,

(ii) B is an expansive mapping,

(iii) A(M) ⊂ (I−B)(X) and [x = Bx+Ay, y ∈M ] =⇒ x ∈M( or A(M) ⊂ (I−B)(M)),

(iv) If xn is a sequence in F(X,M ;B,A) such that xn ⇀ x and Bxn ⇀ y then y = Bx,

(v) The set F(X,M ;B,A) is relatively weakly compact.

Then there exists a point x ∈M with Ax+Bx = x.

Proof. For each y ∈ M , by (iii), there exists x ∈ X such that x − Bx = Ay. By (ii),
Lemma 1.9 and the second part of (iii), we have x = (I − B)−1Ay ∈ M . As is shown in
Theorem 3.3 one obtains that (I − B)−1A : M → M is sequentially weakly continuous
and there is a point x ∈M with x = (I −B)−1Ax. This completes the proof. �

Let us now state some consequences of Theorem 3.4. First, the case when X is a
reflexive Banach space is considered, so that a closed, convex and bounded set is weakly
compact. Rechecking the proof of Theorem 3.3, we find that it is only required co(F) to
be weakly compact.

Corollary 3.2. Suppose that the conditions (i)-(iv) of Theorem 3.4 for A and B are
fulfilled. If F(X,M ;B,A) is a bounded subset of a reflexive Banach space X, then, B+A

has at least one fixed point in M .
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The second consequence of Theorem 3.4 is concerned the case when B is non contractive
on M ∈ X, i.e.: ‖Bx−By‖ ≥ ‖x− y‖ for all x, y ∈M .

Corollary 3.3. LetM ⊂ X be a nonempty convex and weakly compact subset. Suppose
that B : X → X and A : M → X are sequentially weakly continuous such that

(i) B is non-contractive on X (or M),

(ii) There is a sequence λn > 1 with λn → 1 such that A(M) ⊂ (I − λnB)(X) and
[x = λnBx+ Ay, y ⊂M ] =⇒ x ∈M(or A(M) ⊂ (I − λnB)(M).

Then B + A has a fixed point in M .

Proof. For each x, y ∈ X we have

‖λnBx− λnBy‖ = λn ‖Bx−By‖ ≥ λn ‖x− y‖ .

Notice that λnB : X → X is expansive with constant λn > 1. By Theorem 3.4, there
exists xn ∈M such that

Axn + λnBxn = xn. (3.3)

Up to a subsequence we may assume that xn ⇀ x in M since M is convex and weakly
compact. Passing the weak limit in (3.3) we proved that Ax+ Bx = x. Which complete
the proof. �

Given by Lemma 1.9, Theorem 3.4 and Theorem 2.4, the following weak type Kras-
noselskii fixed point theorem may be easily formulated, which clearly contains, but not
limited to Theorem 3.4 and Theorem 2.4.

Theorem 3.5. Let M ⊂ X be a nonempty closed convex subset. Suppose that B : X →
X and A : M → X such that

(i) A is sequentially weakly continuous,

(ii) (I −B) is one-to-one,

(iii) A(M) ⊂ (I−B)(X) and [x = Bx+Ay, y ∈M ] =⇒ x ∈M(or A(M) ⊂ (I−B)(M)),
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(iv) If xn is a sequence in F(X,M ;B,A) such that xn ⇀ x and Bxn ⇀ y, then y = Bx,

(v) The set F(X,M ;B,A) is relatively weakly compact.

Then, there exists a point x ∈M with Ax+Bx = x.

Remark 3.3. If B : X → X is a contraction mapping, then (I − B)(X) = X and
hence A(M) ⊂ (I − B)(X). It can be easily seen by (ii) and (iii) that F(X,M ;B,A) =
(I − B)−1A(M). The condition (iv) is weaker than the condition that B is sequentially
weakly continuous.

Taking advantage of the linearity of the operator B, we derive the following result.

Theorem 3.6. Let X be a reflexive Banach space, B : X → X a linear operator and
A : X → X a sequentially weakly continuous map. Assume that the following conditions
are satisfied

(i) (I −B) is continuously invertible,

(ii) There exists R > 0 such that A(BR) ⊂ BβR, where β ≤‖ (I −B)−1 ‖−1 ,

(iii) A(BR) ⊂ (I −B)(X).

Then B + A possesses a fixed point in BR.

Proof. Let F = I − B : X → (I − B)(X). By (i), one can easily see from the fact that
B is linear and β ≤‖ (I −B)−1 ‖−1 that

∥∥∥F−1x− F−1y
∥∥∥ ≤ 1

β
‖x− y‖ ∀x,y ∈ F (X). (3.4)

It follows from (3.4) that F−1 : F (X) → X is continuous. Recall that F−1 being linear
implies that F−1 is weakly continuous. Consequently, one knows from (iii) that
F−1A : BR → X is sequentially weakly continuous. For any x ∈ BR, one easily derive
from (3.4) and (ii) that ‖ F−1Ax ‖≤ R. Hence, F−1A maps BR into itself. Applying
Lemma 1.10 we obtain that F−1A has a fixed point in BR. Which implied that ∃x ∈ BR

such that Bx+ Ax = x. �
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Next, we shall present some concrete mappings which fulfill the condition (i) of
Theorem 3.6. Before stating the consequences, we introduce the following two lemmas.

Lemma 3.3. Let (X, ‖ . ‖) be a linear normed space,M ⊂ X. Assume that the mapping
B : M → X is contractive with constant α < 1, then the inverse of F := I − B : M →
(I −B)(M) exists and

∥∥∥F−1x− F−1y
∥∥∥ ≤ 1

1− α ‖x− y‖ ∀x,y ∈ F (X). (3.5)

Proof. For each x, y ∈M, we have

‖Fx− Fy‖ ≥ (1− α) ‖x− y‖ ,

which proves that F is one-to-one, thus the inverse of F : M → F (M) exists. Now we set

G := F−1 − I : F (M)→ X.

From the identity

I = F ◦ F−1 = (I −B) ◦ (I +G) = (I +G)−B ◦ (I +G),

we obtain that: G = B ◦ (I +G).
Hence

‖Gx−Gy‖ = ‖B(x) +B(G(x))−B(y)−B(G(y))‖

≤ ‖B(x)−B(y)‖+ ‖B(G(x))−B(G(y))‖

≤ α(‖x− y‖+ ‖Gx−Gy‖)

≤ α

1− α ‖x− y‖ .

And so
∥∥∥F−1x− F−1y

∥∥∥ ≤ ‖Gx−Gy‖+ ‖x− y‖

≤ 1
1− α ‖x− y‖ . �
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Lemma 3.4. Let X be a Banach space. Assume that B : X → X is linear and bounded
and Bp is a contraction for some p ∈ N. Then (I − B) maps X onto X, the inverse of
F := I −B : X → X exists and

‖F−1x− F−1y‖ ≤ γp‖x− y‖ x, y ∈ X. (3.6)

Where

γp =





p
1−‖Bp‖ , if ‖B‖ = 1,

1
1−‖B‖ , if ‖B‖ < 1,

‖B‖p−1
(1−‖Bp‖)(‖B‖−1) , if ‖B‖ > 1.

Proof. Let y ∈ X be fixed and define the map By : X → X by

Byx = Bx+ y.

We first show that Bp
y is a contraction. To this end, let x1, x2 ∈ X. Notice that B is

linear. One has
‖Byx1 −Byx2‖ = ‖Bx1 −Bx2‖.

Again
‖B2

yx1 −B2
yx2‖ = ‖B2x1 −B2x2‖.

By induction,
‖Bp

yx1 −Bp
yx2‖ = ‖Bpx1 −Bpx2‖ ≤ ‖Bp‖‖x1 − x2‖.

So Bp
y is a contraction on X. Next, we claim that both (I −B) and (I −Bp) map X onto

X. Indeed, by Banach contraction mapping principle, there is a unique x ∈ X such that
Bp
yx = x. It then follows that Byx is also a fixed point of Bp

y . In view of uniqueness we
obtain that Byx = x and x is the unique fixed point of By. Hence, we have

(I −B)x = y ∈ X,

which implies that (I − B) maps X onto X. It is clear that (I − Bp) maps X onto X.
The claim is proved. Next, for each x,y ∈ X and x 6= y, one easily obtain that

‖(I −Bp)x− (I −Bp)y‖ ≥ (1− ‖Bp‖)‖x− y‖ > 0.
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Which shows that (I −Bp) is one-to-one. Summing the above arguments, we derive that
(I − Bp)−1 exists on X. Therefore, we infer that (I − B)−1 exists on X due to the fact
that

(I −B)−1 = (I −Bp)−1
p−1∑

k=0
Bk. (3.7)

Since Bp is a contraction, we know from (3.5) that

‖(I −Bp)−1‖ ≤ 1
1− ‖Bp‖ . (3.8)

We conclude from Lemma 3.3, (3.7) and (3.8) that

‖(I −B)−1‖ ≤





p
1−‖Bp‖ , if ‖B‖ = 1,

1
1−‖B‖ , if ‖B‖ < 1,
‖B‖p−1

(1−‖Bp‖)(‖B‖−1) , if ‖B‖ > 1.

(3.9)

This proves the Lemma. �

Together Lemmas 1.9, 3.3, 3.4 and Theorem 3.6 immediately yield the following results.

Corollary 3.4. Let X,A be the same as Theorem 3.6. Assume that B : X → X is a
linear expansion with constant h > 1 such that A(BR) ⊂ B(h−1)R for some R > 0 and
A(BR) ⊂ (I −B)(X). Then fixed point for B + A is achieved in BR.

Corollary 3.5. Let X,A be the same as Theorem 3.6. Assume that B : X → X is a
linear contraction with constant α < 1 such that A(BR) ⊂ B(1−α)R for some R > 0. Then
the equation Bx+ Ax = x has at least one solution in BR.

Corollary 3.6. Let X,A be the same as Theorem 3.6. Assume that B : X → X is linear
and bounded and Bp is a contraction for some p ∈ N such that A(BR) ⊂ Bγ−1

p R for some
R > 0, where γp is given in Lemma 3.4. Then the equation Bx+Ax = x has at least one
solution in BR.

Remark 3.4. Given by Lemma 3.4, it is easily verified that, under the conditions in
Theorem 2.1 all the assumptions of Theorem 3.5 are fulfilled. Furthermore, when B ∈
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L(X) and ‖Bp‖ ≤ 1 for some p ≥ 1, instead of requiring [x = Bx+Ay, y ∈M ] =⇒ x ∈M ,
we assume the following condition holds in Theorem 3.5.

[λ ∈ (0,1) and x = λBx+ Ay, y ∈M ] =⇒ x ∈M.

Then Theorem 3.5 also covers the main result Theorem 2.2. However, it does not neces-
sarily require that B is linear in Theorem 3.5.

Finally, inspired by the work of Barroso [5], we give the following asymptotic version
of the Krasnoselskii fixed point theorem .

Theorem 3.7. Let M,X,A,B and the conditions (ii), (iii) and (v) for A and B be the
same as Theorem 3.5. In addition, assume that the following hypotheses are fulfilled.

(a) A is demicontinuous ,

(b) B is sequentially weakly continuous and B(0) = 0.

Then there exists a sequence {xn} in M so that (xn − (A + B)xn)n converges weakly to
zero.

Proof. Keeping the conditions (a) and (b) in mind , we claim that (I − B)−1A is demi-
continuous in M . For each y ∈M , there exists x ∈ X such that

Bx+ Ay = x. (3.10)

By (ii) and the second part of (iii) we have, x = (I − B)−1Ay ∈ M . Let {x}n be a
sequence in M , with xn → x in M ; (I − B)−1Axn ∈ F thus up to a subsequence we may
assume by (v) that (I − B)−1Axn ⇀ y, for some y ∈ M . By hypothesis (a) and (b) we
fined B((I −B)−1Axn) ⇀ By and Axn ⇀ Ax. By (3.10) we have

B((I −B)−1Axn) + Axn = (I −B)−1Axn. (3.11)

Passing the weak limit in (3.11) we have B((I − B)−1Axn) ⇀ y − Ax, by uniqueness
By = y − Ax (i.e : y = (I − B)−1Ax ), which proved the claim. Let the set C = co(F),
where C = co(F) denotes the closed convex hull of F. Then C ⊂ M and is a weakly
compact set by Krein-Šmulian Theorem 1.10. Due to the Theorem 1.19 there is a sequence
{xn} in C such that xn−(I−B)−1Axn ⇀ 0, i.e., (I−B)−1[xn−(A+B)xn] ⇀ 0. Invoking
again the item (b), one can readily deduce that xn−(A+B)xn ⇀ 0. This ends the proof.�
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3.3 Application to a non linear integral equation

In this section, our aim is to present some existence results for the following nonlinear
integral equation

x(t) = f(x) +
∫ t

0
g(s, x(s))ds, x ∈ C(J,X). (3.12)

Where X is a reflexive Banach space and J = [0, T ]. The integral in (3.12) is understood
to be the Pettis integral. To study (3.12), we assume for the remained of this section the
following hypotheses are satisfied:

(H1) f : X → X is sequentially weakly continuous and onto,

(H2) ‖f(x) − f(y)‖ ≥ h‖x − y‖, (h ≥ 2) for all x, y ∈ X; and f maps relatively weakly
compact sets into bounded sets and is uniformly continuous on weakly compact sets,

(H3) for any t ∈ J , the map gt = g(t, ·) : X → X is sequentially weakly continuous,

(H4) for each x ∈ C(J,X), g(·, x(·)) is Pettis integrable on [0, T ],

(H5) there exist α ∈ L1[0, T ] and a nondecreasing continuous function φ from [0,∞) to
(0,∞) such that ‖g(t, x)‖ ≤ α(t)φ(‖x‖) for a.e. t ∈ [0, T ] and all x ∈ X. Further,
assume that ∫ T

0
α(s)ds <

∫ ∞

‖f(0)‖

dr

φ(r) .

β(t) =
∫ t

‖f(0)‖

dr

φ(r) and b(t) = (h− 1)−1β−1Ä ∫ t

0
α(s)ds

ä
.

We now state and prove an existence principle for (3.12).

Theorem 3.8. Suppose that the conditions (H1)-(H5) are fulfilled. Then (3.12) has at
least one solution x ∈ C(J,X).

Proof. We have

∫ (h−1)b(t)

‖f(0)‖

dr

φ(r) =
∫ t

0
α(s)ds. (3.13)
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It follows from (3.13) and the final part of (H5) that b(T ) <∞. We define the set

M =
¶
x ∈ C(J,X) : ‖x(t)‖ ≤ (h− 1)b(t) for all t ∈ J

©
.

Then M is a closed and bounded subset of C(J,X). Let us show that M is convex. Let
x, y ∈M and λ ∈ [0,1]

‖ λx(t) + (1− λ)y(t) ‖≤ (h− 1)b(t),

for all t ∈ J , which implies that λx + (1 − λ)y ∈ M , this shows that M is convex. Let
us now introduce the nonlinear operators A and B as follows:

(Ay)(t) = f(0) +
∫ t

0
g(s, y(s))ds,

(Bx)(t) = f(x(t))− f(0).

The conditions (H1) and (H4) imply thatA andB are well defined on C(J,X), respectively.
Our idea is to use Theorem 3.4 to find the fixed point for the sum A+ B in M . The

proof will be shown in several steps.
Step 1: Prove that A maps M into M , A(M) is equicontinuous and relatively weakly
compact.

For any y ∈ M , we shall show that Ay ∈ M . Let t ∈ J be fixed. Without loss of
generality, we may assume that (Ay)(t) 6= 0. In view of the Hahn-Banach Theorem 1.7
there exists y∗t ∈ X∗ with ‖y∗t ‖ = 1 such that 〈y∗t , (Ay)(t)〉 = ‖(Ay)(t)‖. Thus, one can
deduce from (H5) and (3.13) that

‖(Ay)(t)‖ = 〈y∗t , f(0)〉+
∫ t

0
〈y∗t ,g(s, y(s))〉ds

≤ ‖f(0)‖+
∫ t

0
α(s)φ(‖y(s)‖)ds

≤ ‖f(0)‖+
∫ t

0
α(s)φ((h− 1)b(s))ds

= (h− 1)b(t).

(3.14)

It shows from (3.14) that A(M) ⊂ M and hence is bounded. This proves the first claim
of Step 1. Next, let t, s ∈ J with s 6= t. We may assume that (Ay)(t)−(Ay)(s) 6= 0. Then
there exists x∗t ∈ X∗ with ‖x∗t‖ = 1 and 〈x∗t , (Ay)(t) − (Ay)(s)〉 = ‖(Ay)(t) − (Ay)(s)‖.
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Consequently,

‖(Ay)(t)− (Ay)(s)‖ ≤
∫ t

s
α(τ)φ(‖y(τ)‖)dτ

≤
∫ t

s
α(τ)φ((h− 1)b(τ))dτ

≤ (h− 1)
∣∣∣
∫ t

s
b′(τ)dτ

∣∣∣ = (h− 1)|b(t)− b(s)|.

(3.15)

It follows from (3.15) that A(M) is equicontinuous. The reflexiveness of X implies that
A(M)(t) is relatively weakly compact for each t ∈ J , where A(M)(t) = {z(t) : z ∈ A(M)}.
It follows now from the Ascoli-Arzela Theorem that A(M) is relatively weakly compact
in C(J,X), This completes Step 1.
Step 2: Prove that A : M → M is sequentially weakly continuous. Let {xn} be a
sequence in M with xn ⇀ x in C(J,X), for some x ∈ M . Then xn(t) ⇀ x(t) in X for
all t ∈ J . Fix t ∈ (0, T ]. From the item (H3) one sees that g(t, xn(t)) ⇀ g(t, x(t)) in
X. Together with (H5) and the Lebesgue dominated convergence Theorem for the Pettis
integral yield for each ϕ ∈ X∗ that

〈ϕ, (Axn)(t)〉 → 〈ϕ, (Ax)(t)〉,

i.e., (Axn)(t) ⇀ (Ax)(t) in X. We can do this for each t ∈ J and notice that A(M) is
equicontinuous, hence, by the Ascoli-Arzela Theorem there exists a subsequence (xnj

) of
(xn) such that Axnj

⇀ y for some y ∈ C(I,X). Consequently, we have that y(t) = Ax(t)
for all t ∈ I and hence Axnj

⇀ Ax. Now, a standard argument shows that Axn ⇀ Ax.
The Step 2 is proved.
Step 3: Prove that the conditions (ii) and (iii) of Theorem 3.4 hold. Since X is reflexive
and f is continuous on weakly compact sets, it shows that B transforms C(J,X) into itself.
This, in conjunction with the first part of (H2), one easily gets thatB : C(J,X)→ C(J,X)
is expansive with constant h ≥ 2. For all x, y ∈ C(J,X), one can see from the first part
of (H2) that

‖(I −B)x(t)− (I −B)y(t)‖ ≥ (h− 1)‖x(t)− y(t)‖ ≥ ‖x(t)− y(t)‖,

where I is identity map. Thus, one has

‖(I −B)x(t)‖ ≥ (h− 1)‖x(t)‖ ≥ ‖x(t)‖, ∀x ∈ C(J,X). (3.16)
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Assume now that x = Bx+Ay for some y ∈M . We conclude from (3.14) and (3.16) that

‖x(t)‖ ≤ ‖(I −B)x(t)‖ = ‖(Ay)(t)‖ ≤ (h− 1)b(t),

which shows that x ∈ M . Therefore, the second part of (iii) in Theorem 3.4 is fulfilled.
Next, for each y ∈ C(J,X), we define By : C(J,X)→ C(J,X) by

(Byx)(t) = (Bx)(t) + y(t).

Then By is expansive with constant h ≥ 2 and onto since f maps X onto X. By Lemma
3.1, we know there exists x∗ ∈ C(J,X) such that Byx

∗ = x∗, that is (I−B)x∗ = y. Hence
A(M) ⊂ (I −B)(X). This completes Step 3.
Step 4: Prove that the condition (v) of Theorem 3.4 is satisfied. For each x ∈ F(X,M ;B,A),
then by the definition of F and Lemma 1.9 there exists y ∈M such that

x = (I −B)−1Ay. (3.17)

Hence, for t, s ∈ J , we obtain from Lemma 1.9, (3.17) and (3.15) that

‖x(t)− x(s)‖ ≤‖ (I −B)−1Ay(t)− (I −B)−1Ay(s) ‖

≤ |b(t)− b(s)|,

which illustrates that F(X,M ;B,A) is equicontinuous in C(J,X). Let {xn} be a sequence
in F. Then {xn} is equicontinuous in C(J,X) and there exists {yn} in M with xn =
Bxn + Ayn. Thus, one has from (3.14) and (3.16) that

‖xn(t)‖ ≤ 1
h− 1‖(Ayn)(t)‖ ≤ b(t),∀t ∈ J.

It follows that, for each t ∈ J , the set {xn(t)} is relatively weakly compact in X. The
above discussion tells us that {xn : n ∈ N} is relatively weakly compact. The Eberlein-
Šmulian Theorem 1.8 implies that F is relatively weakly compact. This achieves Step
4
Step 5: Prove that B fulfills the condition (iv) of Theorem 3.4. By the second part of (H2)
and the fact that F is relatively weakly compact we obtain that B(F) is bounded. Again by
the second part of (H2) and the fact that F is equicontinuous, one can readily deduce that
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B(F) is also equicontinuous. Now, let {xn} ⊂ F with xn ⇀ x in C(J,X) for some x ∈M .
It follows from (H1) that (Bxn)(t) ⇀ (Bx)(t). Since {Bxn : n ∈ N} is equicontinuous in
C(J,X), we may apply the Ascoli-Arzela Theorem 1.6 and concludes that there exists a
subsequence (xnj

) of (xn) such that Bxnj
⇀ y, for some y ∈ C(J,X). Hence, Bx = y and

by standard arguments we have Bxn ⇀ Bx in C(J,X). This completes Step 5.
Now, invoking Theorem 3.4 we obtain that there is x∗ ∈M with Bx∗ + Ax∗ = x∗.

i.e., x∗ is a solution to (3.12). This accomplishes the proof. �
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Chapter 4
Fixed Point Theory In Banach Algebras

In recent years, many authors have focused on the resolution of integral equations
and differential equations in Banach algebras satisfying certain sequential conditions,
and obtained a lot of valuable results (see [7], [2]). Some of this equation the following
nonlinear operator equation,

AxBx = x, x ∈M, (4.1)

and,
AxBx+ Cx = x, x ∈M. (4.2)

Where M is a closed, bounded and convex subset of a Banach algebra, A, B and C are
three operators defined on M .

The study of the nonlinear integral equations in Banach algebras was initiated by
Dhage [10]. These studies were mainly based on the convexity of the bounded domain, and
properties of the operators A, B and C ( weakly continuous, contractive, D-Lipschitzian).

In this chapter we extend a new version for Some nonlinear problems involve the
study of solutions of nonlinear operator equations of the form (4.1) and (4.2) under weak
topology. We start with give some definitions and proprieties and preliminary results
which are useful for our analysis.
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Definition 4.1. An algebra X is a vector space endowed with an internal composition
law denoted by (.), i.e., 




(·) : X ×X → X

(x, y) → x.y

which is associative and bilinear. A normed algebra is an algebra endowed with a norm
satisfying the following property

‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ X.

A complete normed algebra is called a Banach algebra.

Definition 4.2. We will say that a Banach algebra X satisfies condition (P) if

(P)





For any sequences (xn)n and (yn)n in X such that xn ⇀ x and yn ⇀ y,

we have xnyn ⇀ xy.

Proposition 4.1. If X satisfies condition (P) then C(M,X) is also a Banach algebra
satisfying condition (P), where M is a compact Hausdorff space.

The proof is based on Dobrokov’s theorem:

Theorem 4.1. [11] Let M be a compact Hausdorff space and X be a Banach space.
Let (fn)n be a bounded sequence in C(M,X) and f ∈ C(M,X). Then (fn)n is weakly
convergent to f if and only if (fn(t))n is weakly convergent to f(t) for each t ∈M.

Proof. Let {xn} and {yn} be any sequences in C(M,X), such that xn ⇀ x and yn ⇀ y.
So, for each t ∈M , we have xn(t) ⇀ x(t) and yn(t) ⇀ y(t). Since X satisfies the condition
(P), then

xn(t)yn(t) ⇀ x(t)y(t),

because (xnyn)n is a bounded sequence. Moreover, this implies with Theorem 4.1, that

xnyn ⇀ xy,

Which shows that the space C(M,X) verifies condition (P). �
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4.1 Fixed point theorems in Banach algebras
satisfying the condition (P)

Now, we introduce a class of Banach algebras satisfying certain sequential conditions
called here the condition (P). The main goal of this section is to prove some new fixed
point theorems in a nonempty closed convex subset of any Banach algebras or Banach
algebras satisfying the condition (P) under weak topology setting. Our main conditions
are formulated in term of weak sequential continuity to the three nonlinear operators A,
B and C involved in equation (4.1), (4.2).

Theorem 4.2. X be a Banach algebras satisfies condition (P). Let M be a closed,
convex subset of X. Assume that A,B : M → X satisfies:

(i) A is sequentially weakly continuous,

(ii) B is λ-contraction,

(iii) If x = BxAy for some y ∈M , then x ∈M ,

(iv) If xn is a sequence in F where

F := {x ∈ X : x = BxAy for some y ∈M}.

Such that xn ⇀ x, for some x in M , then Bxn ⇀ Bx,

(v) The set F is relatively weakly compact.

Then, the operator equation (4.1) has a solution, whenever λK < 1, where

K =‖ A(M) ‖= sup{‖ Ax ‖: x ∈M}.

Proof. Let y ∈M we consider the operator



Ly : M →M

y → Ly(x) = BxAy.
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Let x1, x2 ∈ M , by (ii) we have ‖ Ly(x1) − Ly(x2) ‖≤ λK ‖ x1 − x2 ‖. By Banach
fixed point Theorem there exists unique point Ty in M such that Ty = BTyAy. By
assumption (iii), the mapping T : M −→ M given by y 7−→ Ty is well-defined. We
observe that T (M) ⊂ F, we claim now that T is sequentially weakly continuous in M .
Indeed, let yn be a sequence in M such that yn ⇀ y in M . Since Tyn ⊂ F, thus up to a
subsequence we may assume by (v), that Tyn ⇀ x, for some x ∈ M . By (iv), we have
BTyn ⇀ Bx. Also, from (i) it follows that Ayn ⇀ Ay. Due to property P of space X
and the equality Tyn = BTynAyn we obtain x = BxAy. By uniqueness, we conclude that
x = Ty. This proves the claim. Take now the subset C = co(F) ⊂ M . Krein-Šmulian
Theorem 1.10 implies that C is a weakly compact set. Furthermore, it is easy to see that
T (C) ⊂ C. Applying Lemma 1.10, we find a fixed point x ∈ C for T , hence AxBx = x

this proves Theorem . �

Corollary 4.1. X be a Banach algebras satisfies condition (P). Let M be a convex and
weakly compact subset of X and let A,B : M → X be sequentially weakly continuous
operators such that

(i) B is nonexpansive,

(ii) If λ ∈ (0,1) and x = λBxAy with y ∈M , then x ∈M .

Then the operator equation (4.1) has a solution.whenever K < 1, where

K =‖ A(M) ‖= sup{‖ Ax ‖: x ∈M}.

Proof. For 0 < λ < 1 define Bλ = λB. Let x1, x2 ∈ X,

‖Bλx1 −Bλx2‖ ≤ K ‖x1 − x2‖ .

So Bλ is contraction. By Theorem 4.2, we find a family yλ ⊂M such that λByλAyλ = yλ

for all λ ∈ (0,1). Taking now a sequence 0 < λn < 1 so that λn → 1, and considering the
respective sequence yn ⊂M satisfying

λnBynAyn = yn for all n ∈ N. (4.3)

As M is weakly compact, we can find a subsequence yni
such that yni

⇀ y in X with
y ∈ M . A and B are sequentially weakly continuous so, the property P of space X and
the equation (4.3) give us ByAy = y . �
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Theorem 4.3. X be a Banach algebras satisfies condition (P). Let M be a closed,
convex subset of X. Assume that A,B : M → X satisfies the conditions of Theorem 4.2.

If only replaced the condition (ii) by that
Ç
I

B

å−1
exists on A(M).

Then, the operator equation (4.1) has a solution whenever λK < 1 , where

K =‖ A(M) ‖= sup{‖ Ax ‖: x ∈M}.

Proof. Let y ∈ M there is unique point Ty ∈ X such that Ty = BTyAy. By (ii) and
(iii) the mapping 




T : M →M

y → Ty =
Ç
I

B

å−1
Ay

is well defined. We claim that the operator y 7−→
Ç
I

B

å−1
y is continuous. To see this,

Let (xn) be a sequence converging to x ∈M . We set yn =
Ç
I

B

å−1
xn and y =

Ç
I

B

å−1
x

Then 


yn = Bynxn

y = Byx

Hence

‖yn − y‖ = ‖Bynxn −Byx‖

≤ ‖Byn −By‖ ‖xn‖+ ‖By‖ ‖xn − x‖

≤ α ‖xn‖ ‖yn − y‖+ ‖By‖ ‖xn − x‖

≤ ‖By‖
(1− α ‖ xn ‖)

‖xn − x‖

Therefore ‖yn − y‖ −→ 0 as n −→ +∞. This proves the claim. Since T is a composition
of a continuous and a sequentially weakly continuous operator, then it is a sequentially
weakly continuous operator on M . By Lemma 1.10 the operator T : C → C has a fixed
point where C is defined in the proof of Theorem 4.2. This complete the proof. �

Theorem 4.4. LetM ⊂ X be a nonempty closed convex subset. Suppose that A : M →
X and B : X → X such that

(i) A is sequentially weakly continuous,
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(ii)
Ç
I

B

å
is continuously invertible,

(iii) A(M) ⊂
Ç
I

B

å
(X) and [x = BxAy, y ∈M ] =⇒ x ∈M ,

(iv) The set F(X,M ;B,A) is relatively weakly compact.

Then the operator equation (4.1) has a solution.

Proof. Let y ∈ M , by (iii) there exists x ∈ X such that
Ç
I

B

å
x = Ay. By (ii) and the

second part of (iii ) we have x =
Ç
I

B

å−1
Ay ∈M . Let T the operator defined in the proof

of Theorem 4.3. By (i) and (ii) T is a composition of a continuous and a sequentially
weakly continuous operator, then it is a sequentially weakly continuous. By Lemma 1.10
the operator T : C → C has a fixed point where C is defined in the proof of Theorem 4.2.
This complete the proof. �

Theorem 4.5. Let X be a reflexive Banach algebra, A : X → X and B : X → X.
Assume that the following conditions are satisfied

(i) A is sequentially weakly continuous ,

(ii)
Ç
I

B

å
is continuously invertible,

(iii) There exists R > 0 such that A(BR) ⊂ BβR , where β ≤
∥∥∥∥∥

Ç
I

B

å−1∥∥∥∥∥

−1

,

(iv) A(BR) ⊂
Ç
I

B

å
(X).

Then the operator equation (4.1) has a solution.

Proof. Let y ∈ BR, by (ii) and (iv) there exists x ∈ X such that x =
Ç
I

B

å−1
Ay. We

consider 



T : BR → X

y → Ty =
Ç
I

B

å−1
Ay.

By (i) and (ii) T is sequentially weakly continuous. For any x ∈ BR by (iii) we have
‖T (x)‖ ≤ R . Hence T maps BR into itself. By Lemma 1.2 and Lemma 1.10 we obtain
that there exists x ∈ BR such that Tx = x. So AxBx = x. �
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Theorem 4.6. Let X be a reflexive Banach algebras satisfies condition P . M be a
bounded, closed convex subset of X. Assume that A, B : M −→ X, satisfies

(i) A is weakly continuous ,

(ii) B is λ-contraction ,

(iii) If x = BxAy, y ∈M =⇒ x ∈M .

Then, the operator equation (4.1) has a solution whenever λK < 1, where

K =‖ A(M) ‖= sup{‖ Ax ‖: x ∈M}.

Proof. Let y ∈M , let Ly : M →M defined by Ly(x) = BxAy, x ∈M . Let x1, x2 ∈M

‖ Ly(x1)− Ly(x2) ‖≤ λK ‖ x1 − x2 ‖ .

By Banach contraction principal there exists unique x(y) ∈M such that x(y) = Bx(y)Ay.
We consider L : M → M defined by L(y) = x(y). Now we assume that L is weakly
continuous. To see this let F in M be weakly closed, by (i) and (ii) we have A−1(F ) and
B−1(F ) are weakly closed, so L−1(F ) is. Hence L is weakly continuous. By Theorem 1.16
there exists y ∈M such that L(y) = y. So ByAy = y. �

4.2 Fixed point theorems involving three operators

Now, we are ready to state our first fixed point theorems in Banach algebras to provide
the existence results of equation (4.2).

Theorem 4.7. [6, Theorem 3.1] Let X be a Banach algebra andM be a nonempty closed
convex subset of X. Let A : M → X and B, C : X → X three operators such that

(i)
Ç
I − C
B

å−1
exists on A(M),

(ii)
Ç
I − C
B

å−1
A is sequentially weakly continuous,
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(iii)
Ç
I − C
B

å−1
A(M) is relatively weakly compact,

(iv) x = BxAy + Cx =⇒ x ∈M, for all y ∈M .

Then the equation (4.2) has at least one solution in M .

Proof. From assumption (i), it follows that for each y ∈ M , there is a unique xy ∈ X
such that

Ç
I − C
B

å
xy = Ay or, equivalently BxyAy + Cxy = xy. Since the hypothesis

(iv) holds, then xy ∈M . Therefore, we can defined




T : M →M

y → Ty =
Ç
I − C
B

å−1
Ay.

.

By using the hypothesis (ii), (iii) and Theorem 1.18, we conclude that T has a fixed point
y ∈M . Hence, y verifies equation (4.2). �

Theorem 4.8. Let M be a closed, convex, and bounded subset of a Banach algebra X
and let A,B,C : M →M be three operators such that:

(i) B and C are Lipschitzian with Lipschitz constants α and β respectively,

(ii) A is weakly continuous,

(iii) A(M) is a relatively weakly compact subset of X,

(iv) BxAy + Cx ∈M ∀x, y ∈M .

Then, the operator equation (4.2) has a solution whenever αK + β < 1, where

K =‖ A(M) ‖= sup{‖ Ax ‖: x ∈M}.

Proof. Let y ∈M and defined the mapping



Ly : M →M

x → Ly(x) = BxAy + Cx.
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Let x1, x2 ∈M, the use of assumption (i) leads to

‖ Ly(x1)− Ly(x2) ‖ ≤‖ Bx1Ay −Bx2Ay ‖ + ‖ Cx1 − Cx2 ‖

≤‖ Bx1 −Bx2 ‖‖ Ay ‖ + ‖ Cx1 − Cx2 ‖

≤ (αK + β) ‖ x1 − x2 ‖ .

By Banach fixed point Theorem there is a unique xy ∈ M such that Ly(xy) = xy, so xy
verifies BxyAy + Cxy = xy, so the operator x 7−→

Ç
I − C
B

å−1
x is well defined and,

xy =
Ç
I − C
B

å−1
Ay.

Let L : M →M be defined by L(y) = xy. We claim that the operator y 7−→
Ç
I − C
B

å−1
(y)

is continuous. To see this, Let (xn) be a sequence converging to x ∈ M . We set

yn =
Ç
I − C
B

å−1
xn and y =

Ç
I − C
B

å−1
x

Then 


yn = Bynxn + Cyn

y = Byx+ Cy

Hence

‖yn − y‖ = ‖Bynxn + Cyn −Byx− Cy‖

≤ ‖Byn −By‖ ‖xn‖+ ‖By‖ ‖xn − x‖+ ‖Cyn − Cy‖

≤ α ‖xn‖ ‖yn − y‖+ ‖By‖ ‖xn − x‖+ β ‖yn − y‖

≤ ‖By‖
(1− α ‖ xn ‖ −β) ‖xn − x‖

Therefore ‖yn − y‖ −→ 0 as n −→ +∞. This proves the claim. Since L is a composition
of a continuous and a weakly continuous operator, then it’s a weakly continuous operator
on M . By virtue of the hypothesis (iv) L(M) is relatively weakly compact, by Theorem
1.17 there exists x ∈M which is fixed point of L. This complete the proof. �

Theorem 4.9. X be a Banach algebras satisfies condition (P). Let M be a closed,
convex subset of X. Assume that A,B,C : M −→ X satisfies:

(i) B and C are contraction with constants α and β respectively ,
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(ii) A and C are sequentially weakly continuous,

(iii) If x = BxAy + Cx for some y ∈M , then x ∈M ,

(iv) If xn is a sequence in F where

F := {x ∈ X : x = BxAy + Cx for some y ∈M}.

Such that xn ⇀ x, for some x in M , then Bxn ⇀ Bx,

(v) The set F is relatively weakly compact.

Then the operator equation (4.2) has a solution, whenever αK + β < 1, where

K =‖ A(M) ‖= sup{‖ Ax ‖: x ∈M}.

Proof. Let y ∈M there exists unique point x(y) ∈M such that x(y) = Bx(y)Ay+Cx(y).
We consider the operator L : M → M defined by L(y) = x(y). Let yn be sequence in M
such that yn ⇀ y, y ∈M . We have L(M) ∈ F, thus up to a subsequence we may assume
by (v) that Lyn ⇀ x, x ∈M . By (ii), (iv) and the property (P) of space X we have,

Bx(yn)Ayn + Cx(yn) ⇀ Bx(y)Ay + Cx(y),

So, x = Bx(y)Ay + Cx(y) in view of uniqueness we have x = x(y). This proves that L
is sequentially weakly continuous. By Lemma 1.10 the operator L : C → C has a fixed
point where C defined in proof of Theorem 4.2. �

Theorem 4.10. LetM be a closed, convex subset ofX. Assume that A,B,C : M −→ X

three operator satisfies:

(i) B and C are contraction with constants α and β respectively ,

(ii) A is sequentially weakly continuous,

(iii) If x = BxAy + Cx , for some v ∈M , then y ∈M ,

(iv) The set F is relatively weakly compact. Where

F := {x ∈ X : x = BxAy + Cx for some y ∈M}.
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Then the operator equation (4.2) has a solution whenever αK + β < 1, where

K =‖ A(M) ‖= sup{‖ Ax ‖: x ∈M}.

Proof. Let y ∈ M by assumption (i), the mapping Ly : M → X, defined by Ly(x) =
BxAy + Cx is contraction so by Banach fixed point Theorem there exists xy ∈ M such
that xy = BxyAy + Cxy then,

xy =
Ç
I − C
B

å−1
Ay.

We consider L : M → M by L(y) =
Ç
I − C
B

å−1
Ay. As is shown in Theorem 4.8, one

obtains that
Ç
I − C
B

å−1
is continuous. So, L is sequentially weakly continuous operator.

We complete the proof white the same proof of Theorem 4.9. �

Theorem 4.11. Let M ⊂ X be a nonempty closed convex subset. Suppose that A :
M → X and B, C : X → X such that

(i) A is sequentially weakly continuous,

(ii)
Ç
I − C
B

å
is continuously invertible,

(iii) A(M) ⊂
Ç
I − C
B

å
(X) and [x = BxAy + Cx, y ⊂M ] =⇒ x ∈M ,

(iv) The set F is relatively weakly compact. Where

F := {x ∈ X : x = BxAy + Cx for some y ∈M}.

Then the operator equation (4.2) has a solution.

Proof. For each y ∈ M , by (iii), there exists x ∈ X such that
Ç
I − C
B

å
x = Ay. By (ii)

and the second part of (iii), x =
Ç
I − C
B

å−1
Ay ∈ M . By conditions (i) and (ii) we have

that the operator y 7−→
Ç
I − C
B

å−1
Ay is sequentially weakly continuous. We complete

proof withe the same proof of Theorem 4.9. �
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Theorem 4.12. Let X be a reflexive Banach algebra, A, B, C : X → X. Assume that
the following conditions are satisfied

(i) A is sequentially weakly continuous ,

(ii)
Ç
I − C
B

å
is continuously invertible,

(iii) There exists R > 0 such that A(BR) ⊂ BβR , where β ≤
∥∥∥∥∥

Ç
I − C
B

å−1∥∥∥∥∥

−1

,

(iv) A(BR) ⊂
Ç
I − C
B

å
(X).

Then the operator equation (4.2) has a solution .

4.3 Fixed point theorems for D-Lipschitzian mappings

Definition 4.3. A mapping F : X → X is called D-Lipschitzian if there exists a contin-
uous and nondecreasing function φF : R+ → R+ satisfying

‖ Fx− Fy ‖≤ φF (‖ x− y ‖), (4.4)

for all x, y ∈ X with φF (0) = 0. Sometimes we call the function φF a D-function of
F on X. If φF (r) = αr for some constant α > 0, then F is called a Lipschitzian with
a Lipschitz constant α and further if α < 1, then F is called a contraction with the
contraction constant α. Again if φF satisfies φF (r) < r, r > 0, then F is called a nonlinear
D-contraction on X.

Example 4.1. f(x) =
»
|x| , x ∈ R and consider φ(r) =

√
r, r ≥ 0. Clearly, φ is con-

tinuous and nondecreasing. First notice that f is subadditive. To see this, let x, y ∈ R.
Then,

(f(x+ y))2 = |x+ y| ≤ |x|+|y|

≤
(»
|x|+

»
|y|
)2

≤ (f(x) + f(y))2.
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Thus, for all x, y ∈ R we have :

f(x+ y) ≤ f(x) + f(y).

Using the subadditivity of f we get

|f(x)− f(y)| ≤ f(x− y) = φ(|x− y|),

for all x, y ∈ R. Thus, f is D- Lipschitzian with D-function φ.

Remark 4.1. Obviously, every Lipschitzian mapping is D-Lipschitzian. The converse
may not be true.

In example 4.1 f is D-Lipschitzian but is not Lipschitzian. Indeed, suppose that f is
Lipschitzian with constant k. Then, for all x ∈ R we have f(x) ≤ k|x|. Hence, for all
x 6= 0 we have k ≥ 1»

|x|
. Letting x go to zero we obtain a contradiction. Consequently,

f is not Lipschitzian.

Lemma 4.1. [2] LetM be a nonempty bounded closed subset of a Banach algebra X and
let B,C : X → X be D-Lipschitzian mappings with D- functions φB and φC respectively.

Assume that for each r > 0 we have ‖M‖φB(r) +φC(r) < r. Then
Ç
I − C
B

å−1
exists and

is continuous.

Proof. Let y ∈ M be fixed. The map τy which assigns to each x ∈ X the value
B(x).y+C(x) defines a nonlinear contraction with a contraction function ψ(r), such that
ψ(r) =‖M ‖ φB(r) + φC(r), r > 0. Indeed, for all x1, x2 ∈ X we have:

‖ τy(x1)− τy(x2) ‖ ≤‖ Bx1 −Bx2 ‖‖ y ‖ + ‖ Cx1 − Cx2 ‖

≤‖M ‖ φB(‖ x1 − x2 ‖) + φC(‖ x1 − x2 ‖).

Now the Boyd and Wong fixed point Theorem 1.15 guarantees that there exists a unique
point x∗ ∈ X such that τy(x∗) = x∗, i.e. y =

Ç
I − C
B

å
x∗. Thus, the operator

N :=
Ç
I − C
B

å−1
: M → X,
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is well defined. Now we show that N is continuous. To see this, let (xn) be a sequence
in M converging to a point x. Since M is closed, then x ∈ M . First notice that for each
z ∈M we have

Nz = CNz + (BNz)z. (4.5)

Hence,

‖ Nxn −Nx ‖ ≤‖ CNxn − CNx ‖ + ‖ (BNxn)xn − (BNx)x ‖

≤‖ CNxn − CNx ‖ + ‖ BNx ‖‖ xn − x ‖ + ‖ BNxn −BNx ‖‖ xn ‖

≤ φC(‖ Nxn −Nx ‖) + φB(‖ Nxn −Nx ‖) ‖M ‖ + ‖ BNx ‖‖ xn − x ‖ .

Thus,

lim sup
n
‖ Nxn−Nx ‖≤ φC(lim sup

n
‖ Nxn−Nx ‖)+φA(lim sup

n
‖ Nxn−Nx ‖) ‖M ‖ .

This shows that lim
n
‖ Nxn − Nx ‖= 0 and consequently N is continuous on M . This

completes the proof. �

Theorem 4.13. Let M be a nonempty, closed, convex and bounded subset of a Banach
algebra X, and let A : M → X and B,C : X → X, be three operators such that:

(i) B and C are D-Lipschitzian with the D-functions φB and φC respectively,

(ii) A is sequentially weakly continuous and A(M) is relatively weakly compact,

(iii) x = BxAy + Cx =⇒ x ∈M, for all y ∈M .

Then the operator equation (4.2) has a solution whenever KφB(r) + φC < r, for r > 0
and is strictly increasing, where K =‖ A(M) ‖.

Proof. In view of Lemma 4.1 the operator τ :=
Ç
I − C
B

å−1
A is a well defined map from

M into X. Notice also by assumption (iii) we have τ(M) ⊂ M . By (ii) and Lemma
4.1, τ is composition of continuous and sequentially weakly continuous operators so τ is

sequentially weakly continuous. We claim now that
Ç
I − C
B

å−1
A(M) is relatively weakly

compact. To see this, let xn be a sequence in M , and let

yn =
Ç
I − C
B

å−1
A(xn).
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Since A(M) is relatively weakly compact, we deduce that there is a subsequence Axn
weakly converging to an element z. And yn =

Ç
I − C
B

å−1
Axn ⇀

Ç
I − C
B

å−1
z We

infer that
Ç
I − C
B

å−1
A(M) is sequentially relatively weakly compact. An application

of Eberlein-Šmulian’s Theorem 1.8 implies that
Ç
I − C
B

å−1
A(M) is relatively weakly

compact, which proves our claim. By Theorem 1.18, N has a fixed point in M . �

Remark 4.2. The next result is consequence of Theorem 4.13.

Theorem 4.14. Let M be a closed, convex and bounded subset of a Banach algebra X
and let A : M → X , B : X → X be two operators such that :

(i) B is D-Lipschitzian with a D-function φ ,

(ii) A is sequentially weakly continuous, and A(M) relatively weakly compact,

(iv) x = BxAy =⇒ x ∈M for all y ∈M .

Then the operator equation (4.1) has a solution, whenever Kφ(r) < r, r > 0, where
K = ‖A(M)‖.

The following proposition will be used throughout in this section .

Proposition 4.2. [6] Let X be a Banach algebra and M be a nonempty closed convex
subset of X. Let A : M → X and B,C : X → X be three operators such that

(i) B and C are D-Lipschitzians with the D-functions φB and φC respectively,

(ii) B is regular on X, i.e., B maps X into the set of all invertible elements of X,

(iii) A is a bounded function with bound K. Then
Ç
I − C
B

å−1
exists on A(M) as soon

as KφB(r) + φC(r) < r, for r > 0.

Theorem 4.15. [2] Let X be a Banach algebra and M be a nonempty closed convex
subset of X. Let A : M → X and B,C : X → X be three operators such that

(i) B and C are D-Lipschitzians with the D-functions φB and φC respectively,
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(ii) B is regular on X,

(iii) A is strongly continuous,

(iv) A(M) is bounded with bound K,

(v)
Ç
I − C
B

å
is weakly compact on A(M),

(vi) x = BxAy + Cx =⇒ x ∈M , for all y ∈M .

Then the equation (4.2) has at least one solution in M as soon as KφB(r) + φC(r) < r,
for all r > 0.

Proof. From Proposition 4.2, it follows that
Ç
I − C
B

å−1
exists on A(M). By virtue of

assumption (vi), we obtain
Ç
I − C
B

å−1
A(M) ⊂M .

Moreover, the use of hypotheses (iv) and (v) leads that
Ç
I − C
B

å−1
A(M) is relatively

weakly compact. Now, we show that
Ç
I − C
B

å−1
A is sequentially weakly continuous. To

see this, let xn be any sequence in M such that xn ⇀ x in M . By virtue of assumption
(iii), we have

Axn → Ax.

Since
Ç
I − C
B

å−1
A is a continuous mapping on A(M), we deduce that

Ç
I − C
B

å−1
Axn →

Ç
I − C
B

å−1
Ax.

This shows that
Ç
I − C
B

å−1
A is sequentially weakly continuous. By Theorem 1.18, yields

that the operator equation. (4.2) has a solution in M . �

Theorem 4.16. [2] Let M be a nonempty closed convex subset of a Banach algebra X.
Let A : M → X and B, C : X → X be three operators such that

(i) B and C are D-Lipschitzians with the D-functions φB and φC respectively,

(ii) A is sequentially weakly continuous and A(M) is relatively weakly compact,
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(iii) B is regular on X,

(iv)
Ç
I − C
B

å−1
is sequentially weakly continuous on A(M),

(v) x = BxAy + Cx =⇒ x ∈M , for all y ∈M .

Then the equation (4.2) has at least one solution in M as soon as KφB(r) + φC(r) < r

for all r > 0

Proof. In view of proposition 4.2 and assumption (v) the operator

τ :=
Ç
I − C
B

å−1
A : M →M

is well defined. Since
Ç
I − C
B

å−1
and A are sequentially weakly continuous. So, by

composition τ is sequentially weakly continuous. Now we show that τ(M) is relatively

weakly compact. To see this, let xn be any sequence in M and let yn =
Ç
I − C
B

å−1
Axn.

Since A(M) is relatively weakly compact, there is a renamed subsequence Axn weakly
converging to an element z. This fact, together with hypothesis (iv) gives that

vn =
Ç
I − C
B

å−1
Axn ⇀

Ç
I − C
B

å−1
z.

We infer that
Ç
I − C
B

å−1
A(M) is sequentially relatively weakly compact. An application

of the Eberlein-Šmulian Theorem 1.8, yields that
Ç
I − C
B

å−1
A(M) is relatively weakly

compact, which prove our claim. The result is concluded immediately from Theorem
1.18. �

4.4 Application to functional integral equations

Let (X, ‖ . ‖) be a Banach algebra satisfying condition (P). Let J = [0, 1] the closed
and bounded interval in R, the set of all real numbers. Let E = C(J,X) the Banach
algebra of all continuous functions from [0, 1] to X, endowed with the sup-norm ‖‖∞,
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defined by ‖ f ‖∞= sup{‖ f(t) ‖; t ∈ [0, 1]}, for each f ∈ C(J,X). We consider the
nonlinear functional integral equation (in short, FIE):

x(t) = a(t) + (T (x)(t)




Ö

q(t) +
σ(t)∫

0

p(t,s,x(s),x(λs))ds

è

.u


 ,0 < λ < 1, (4.6)

for all t ∈ J , where u 6= 0 is a fixed vector of X and the functions a, q, σ, p, T are given,
while x in C(J,X) is an unknown function. We shall obtain the solution of (FIE (4.6))
under some suitable conditions on the functions involved in (4.6). Suppose that the
functions a, q, σ, p and the operator T verify the following conditions:

(H1) a : J → X is a continuous function with ‖ a ‖∞< 1,

(H2) σ : J → J is a continuous and nondecreasing function.

(H3) q : J → R is a continuous function,

(H4) The operator T : C(J,X)→ C(J,X) is such that

(a) T is Lipschitzian with a Lipschitzian constant α,

(b) T is regular on C(J,X),

(c)
Ç
I

T

å−1
is well defined on C(J,X),

(d)
Ç
I

T

å−1
is sequentially weakly continuous on C(J,X).

(H5) The function p : J × J × X × X → R is continuous such that for arbitrary fixed
s ∈ J and x, y ∈ X, the partial function t 7−→ p(t,s,x,y) is continuous uniformly for
(s,x,y) ∈ J ×X ×X,

(H6) There exists r0 > 0 such that:

(a) |p(t,s,x,y)| ≤ r0− ‖ q ‖∞ for each t,s ∈ J ; x, y ∈ X such that ‖ x ‖≤ r0 and
‖ y ‖≤ r0,

(b) ‖ Tx ‖∞≤
Ç

1− ‖ a ‖∞
r0

å 1
‖ u ‖ for each x ∈ C(J,X),

(c) αr0 ‖ u ‖< 1.
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Theorem 4.17. Under assumptions (H1)− (H6), equation (4.6) has at least one solution
x = x(t) which belongs to the space C(J,X).

Proof. In view of proposition 4.1 we show that C(J,X) verifies condition (P).
Let us define the subset M of C(J,X) by

M := {y ∈ C(J,X), ‖ y ‖∞≤ r0} = Br0.

Obviously M is nonempty, convex and closed. Let us consider three operators A,B and
C defined on C(J,X) by

(Ax)(t) = (Tx)(t),

(Bx)(t) =

Ö

q(t) +
σ(t)∫

0

p(t,s,x(s),x(λs))ds

è

.u, 0 < λ < 1

(Cx)(t) = a(t)x(t).

We shall prove that the operators A,B and C satisfy all the conditions of Theorem 4.16.

(i) From assumption (H4)(a), A is Lipschitzian with a Lipschitz constant α. Next, we
show that C is Lipschitzian on C(J,X). To see this, fix arbitrarily x, y ∈ C(J,X).
Then, if we take an arbitrary t ∈ J , we get

‖ (Cx)(t)− (Cy)(t) ‖ =‖ a(t)x(t)− a(t)y(t) ‖

≤‖ a ‖∞‖ x(t)− y(t) ‖ .

From the last inequality and taking the supremum over t, we obtain

‖ Cx− Cy ‖∞≤‖ a ‖∞‖ x− y ‖∞ .

This proves that C is Lipschitzian with a Lipschitz constant ‖ a ‖∞ .

(ii) Now we show that B is sequentially weakly continuous onM and B(M) is relatively
weakly compact. Firstly, we verify that if x ∈M, then Bx ∈ C(J,X). Let tn be any
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sequence in J converging to a point t ∈ J . Then

‖ (Bx)(tn)− (Bx)(t) ‖ =

∥∥∥∥∥∥∥



σ(tn)∫

0

p(tn,s,x(s),x(λs))ds−
σ(t)∫

0

p(t,s,x(s),x(λs))ds


 .u

∥∥∥∥∥∥∥

≤



σ(tn)∫

0

|p(tn,s,x(s),x(λs))− p(t,s,x(s),x(λs))| ds


 ‖u‖

+

∣∣∣∣∣∣∣

σ(tn)∫

σ(t)

|p(t,s,x(s),x(λs))| ds

∣∣∣∣∣∣∣
‖u‖

≤



1∫

0

|p(tn,s,x(s),x(λs))ds− p(t,s,x(s),x(λs))| ds

 ‖u‖

+ (r0 − ‖q‖∞) |σ(tn)− σ(t)| ‖u‖ .

Since tn → t, so, (tn,s,x(s),x(λs)) → (t,s,x(s),x(λs)), for all s ∈ J . Taking into
account (H5) the hypothesis, we obtain

p(tn,s,x(s),x(λs))→ p(t,s,x(s),x(λs)) in R.

Moreover, the use of assumption (H6) leads to

|p(tn,s,x(s),x(λs)| − |p(t,s,x(s),x(λs)| ≤ 2(r0 − ‖q‖∞),

for all t,s ∈ J, λ ∈ (0, 1). Consider



ϕ : J → R

s → ϕ(s) = 2(r0 − ‖q‖∞)
.

Clearly ϕ ∈ L1(J). Therefore, from the dominated convergence theorem and as-
sumption (H2), we obtain

(Bx)(tn)→ (Bx)(t) in X.

It follows that Bx ∈ C(J,X).
Next, we prove B is sequentially weakly continuous on M . Let xn be any sequence
in M weakly converging to a point x in M . So, from assumptions (H5)− (H6) and
the dominated convergence theorem, we get

lim
n→∞

1∫

0

p(t,s,xn(λs))ds =
1∫

0

p(t,s,x(s),x(λs)),
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which implies

lim
n→∞

Ñ
q(t) +

1∫

0

p(t,s,xn(s),xn(λs))ds
é
.u =

Ñ
q(t) +

1∫

0

p(t,s,x(s),x(λs))ds
é
.u.

Hence
Bxn(t)→ Bx(t) in X.

Since (Bxn)n is bounded by r0‖u‖, then Bxn ⇀ Bx We conclude that B is sequen-
tially weakly continuous on M .
Now, we show B(M) is relatively weakly compact.

Step 1: By definition,

B(M) := {B(x), ‖ x ‖∞≤ r0}.

For all t ∈ J , we have

B(M)(t) := {B(x)(t), ‖ x ‖∞≤ r0}.

We claim that B(M)(t) is sequentially weakly relatively compact in X. To see this,
let xn be any sequence in M , we have (Bxn)(t) = rn(t).u, where

rn(t) = q(t) +
∫ 1

0
p(t,s,xn(s),xn(λs))ds.

Since |rn(t)| ≤ r0 and (rn(t)) is a real sequence, so, there is a renamed subsequence
such that

rn(t)→ r(t) in R,

which implies
rn(t).u→ r(t).u in X,

and, consequently
(Bxn)(t)→ (q(t) + r(t)).u in X.

then, B(M)(t) is sequentially relatively weakly compact in X.
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Step 2: We prove that B(M) is weakly equicontinuous on J . If we take ε > 0;
x ∈M ; x∗ ∈ X∗; t,t′ ∈ J such that t ≤ t

′ and t′ − t ≤ ε. Then,

∣∣∣x∗
Ä
(Bx) (t)− (Bx) (t′)

ä∣∣∣ =

∣∣∣∣∣∣∣∣

σ(t)∫

0

p(t,s,x(s),x(λs))ds−
σ(t′ )∫

0

p(t′ ,s,x(s),x(λs))ds

∣∣∣∣∣∣∣∣
‖x∗(u)‖

≤



σ(t)∫

0

∣∣∣p(t,s,x(s),x(λs))− p(t′ ,s,x(s),x(λs))
∣∣∣ ds


 ‖x∗(u)‖

+




σ(t′ )∫

σ(t)

∣∣∣p(t′ ,s,x(s),x(λs))
∣∣∣ds


 ‖x∗(u)‖

≤ [ω(p,ε) + (r0 − ‖q‖∞) (ω(σ,ε))] ‖x∗(u)‖

where

ω(p,ε) = sup
{∣∣∣p(t,s,x,y)− p(t′ ,s,x,y)

∣∣∣ : t,t′ ,s ∈ J ;
∣∣∣t− t′

∣∣∣ ≤ ε;x,y ∈ Br0

}
,

ω(σ,ε) = sup
{∣∣∣σ(t)− σ(t′)

∣∣∣ : t,t′ ∈ J ;
∣∣∣t− t′

∣∣∣ ≤ ε
}

.

Taking into account the hypothesis (H5) and in view of the uniform continuity of
the function σ on the set J , it follows that ω(p,ε)→ 0 and ω(σ,ε)→ 0 as ε→ 0. An
application of the Arzela-Ascoli Theorem 1.6 , we conclude that B(M) is sequentially
weakly relatively compact in X. Again an application result of Eberlein-Šmulian
theorem yields that B(M) is relatively weakly compact.

(iii) From assumption (H4)(b), A is regular on C(J,X).

(iv) We show that
Ç
I − C
A

å−1
is sequentially weakly continuous on B(M).

To see this, let x, y ∈ C(J,X) such that
Ç
I − C
A

å
(x) = y,

or, equivalently
(1− a)x
Tx

= y.
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Since ‖ a ‖∞< 1, so, (1− a)−1 exists on C(J,X), then
Ç
I

T

å
(x) = (1− a)−1y.

This implies, from assumption (H4)(c), that

x =
Ç
I

T

å−1
(1− a)−1y.

Thus Ç
I − C
A

å−1
(x) =

Ç
I

T

å−1
(1− a)−1(x),

for all x ∈ C(J,X). Now, let xn be a weakly convergent sequence of B(M) to a
point x in B(M), then

(1− a)−1xn ⇀ (1− a)−1x,

and so, it follows from assumption (H4)(d) that
Ç
I

T

å−1
(1− a)−1xn ⇀

Ç
I

T

å−1
(1− a)−1x,

we conclude that Ç
I − C
A

å−1
(xn) ⇀

Ç
I − C
A

å−1
(x).

(v) Finally, it remains to prove the hypothesis (v) of Theorem 4.16.

To see this, let x ∈ C(J,X) and y ∈M such that

x = AxBy + Cx,

or, equivalently for all t ∈ J ,

x(t) = a(t)x(t) + (Tx)(t)(By)(t).

But, for all t ∈ J , we have

‖ x(t) ‖ ≤‖ x(t)− a(t)x(t) ‖ + ‖ a(t)x(t) ‖ .

≤ ‖(Tx)(t)‖ r0‖u‖+ ‖a‖∞‖x(t)‖

≤
Ç

1− ‖ a ‖∞
r0

å
r0+ ‖ a ‖∞‖ x(t) ‖

≤ r0− ‖ a ‖∞
1− ‖ a ‖∞

≤ r0.
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From the last inequality and taking the supremum over t, we obtain

‖ x ‖∞≤ r0.

We conclude that the operators A,B and C satisfy all the requirements of Theorem
4.16. So the FIE (4.6) has a solution in the space C(J,X). �
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Conclusion

Troughs this work we have treated some new fixed point theorems of Krasnoselskii
under weak topology of Banach spaces, for the sum and the product of two operators.
Particularly, contraction and expansive mapping, then we make as applications some
existence results for some nonlinear integral equations in Banach spaces endowed with
their weak topologies. The structure of the space and the properties of the map are very
important to obtain a fixed point, for this reason we proposed some conditions for the
space.

In the near future, we aim at investigating the fixed point theorems of Krasnoselskii
in generalized Banach space under weak topology and it’s applications.
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